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A moment-matching Ferguson
& Klass algorithm∗
Julyan Arbel1,2 and Igor Prünster1

1Bocconi University, Milan, Italy
2Collegio Carlo Alberto, Moncalieri, Italy

Abstract. Completely random measures (CRM) represent the key building
block of a wide variety of popular stochastic models and play a pivotal role
in modern Bayesian Nonparametrics. A popular representation of CRMs as
a random series with decreasing jumps is due to Ferguson and Klass (1972).
This can immediately be turned into an algorithm for sampling realizations
of CRMs or more elaborate models involving transformed CRMs. However,
concrete implementation requires to truncate the random series at some
threshold resulting in an approximation error. The goal of this paper is to
quantify the quality of the approximation by a moment-matching criterion,
which consists in evaluating a measure of discrepancy between actual mo-
ments and moments based on the simulation output. Seen as a function
of the truncation level, the methodology can be used to determine the
truncation level needed to reach a certain level of precision. The resulting
moment-matching Ferguson & Klass algorithm is then implemented and
illustrated on several popular Bayesian nonparametric models.
Key words and phrases: Bayesian Nonparametrics, Completely random
measures, Ferguson & Klass algorithm, Moment-matching, Normalized
random measures, Posterior sampling.

1. INTRODUCTION

Independent increment processes or, more generally, completely random mea-
sures (CRMs) are ubiquitous in modern stochastic modeling and inference. They
form the basic building block of countless popular models in, e.g., Finance, Biol-
ogy, Reliability, Survival Analysis. Within Bayesian nonparametric statistics they
play a pivotal role. The Dirichlet process, the cornerstone of the discipline intro-
duced in Ferguson (1973), can be obtained as normalization or exponentiation of
suitable CRMs (see Ferguson, 1974). Moreover, as shown in Lijoi and Prünster
(2010), CRMs can be seen as the unifying concept of a wide variety of Bayesian
nonparametric models. See also Jordan (2010). The concrete implementation of
models based on CRMs often requires to simulate their realizations. Given they
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are discrete infinite objects,
∑
i≥1 JiδZi , some kind of truncation is required, pro-

ducing an approximation error
∑
i≥M+1 JiδZi . Among the various representations

useful for simulating realizations of CRMs the method due to Ferguson and Klass
(1972) and popularized by Walker and Damien (2000) stands out in that, for
each realization, the weights Ji’s are sampled in decreasing order. This clearly
implies that for a given truncation level M the approximation error over the
whole sample space is minimized. The appealing feature of decreasing jumps has
lead to a huge literature exploiting the Ferguson & Klass algorithm. Limiting
ourselves to recall contributions within Bayesian Nonparametrics we mention,
among others, Argiento et al. (2016, 2015); Barrios et al. (2013); De Blasi et al.
(2010); Epifani et al. (2003); Griffin and Walker (2011); Griffin (2016); Nieto-
Barajas and Walker (2002); Nieto-Barajas et al. (2004); Nieto-Barajas and Walker
(2004); Nieto-Barajas and Prünster (2009); Nieto-Barajas (2014). General refer-
ences dealing with the simulation of Lévy processes include Rosiński (2001) and
Cont and Tankov (2008), who review the Ferguson & Klass algorithm and the
compound Poisson process approximation to a Lévy process.

However, the assessment of the quality of the approximation due to the trunca-
tion for general CRMs is limited to some heuristic criteria. For instance, Barrios
et al. (2013) implement the Ferguson & Klass algorithm for mixture models by us-
ing the so called relative error index. The corresponding stopping rule prescribes
to truncate when the relative size of an additional jump is below a pre-specified
fraction of the sum of sampled jumps. The inherent drawbacks of such a pro-
cedure and related heuristic threshold-type procedures employed in the several
of the above references is two-fold. On the one hand the threshold is clearly ar-
bitrary without quantifying the total mass of the ignored jumps. On the other
hand the total mass of the jumps beyond the threshold, i.e. the approximation
error, can be very different for different CRMs or, even, for the same CRM with
different parameter values; this implies that the same threshold can produce very
different approximation errors in different situations. Starting from similar con-
cerns about the quality of the approximation, the recent paper by Griffin (2016)
adopts an algorithmic approach and proposes an adaptive truncation sampler
based on sequential Monte Carlo for infinite mixture models based on normal-
ized random measures and on stick-breaking priors. The measure of discrepancy
that is used in order to assess the convergence of the sampler is based on the
effective sample size (ESS) calculated over the set of particles: the algorithm is
run until the absolute value of the difference between two consecutive ESS gets
under a pre-specified threshold. Also motivated by the same concerns, Argiento
et al. (2016, 2015) adopt an interesting approach to circumvent the problem of
truncation by changing the model in the sense of replacing the CRM part of their
model with a Poisson process approximation, which having an (almost surely)
finite number of jumps can be sampled exactly. However, this leaves the question
of the determination of the quality of approximation for truncated CRMs open.
Another line of research, originated by Ishwaran and James (2001), is dedicated
to validating the trajectories from the point of view of the marginal density of the
observations in mixture models. In this context, the quality of the approximation
is measured by the L1 distance between the marginal densities under truncated
and non-truncated priors. Recent interesting contributions in this direction in-
clude bounds for a Ferguson & Klass representation of the beta process (Doshi
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et al., 2009) and bounds for the beta process, the Dirichlet process as well as for
arbitrary CRMs in a size biased representation (Paisley et al., 2012; Campbell
et al., 2015).

This paper faces the problem by a simple yet effective idea. In contrast to the
above strategies, our approach takes all jumps of the CRMs into account and
hence leads to select truncation levels in a principled way, which vary according
to the type of CRM and its parameters. The idea is as follows: given moments of
CRMs are simple to compute, one can quantify the quality of the approximation
by evaluating some measure of discrepancy between the actual moments of the
CRM at issue (which involve all its jumps) and the “empirical” moments, i.e. the
moments computed based on the truncated sampled realizations of the CRM.
By imposing such a measure of discrepancy not to exceed a given threshold and
selecting the truncation level M large enough to achieve the desired bound, one
then obtains a set of “validated” realizations of the CRM, or, in other terms,
satisfying a moment-matching criterion. An important point to stress is that our
validation criterion is all-purpose in spirit since it aims at validating the CRM
samples themselves rather than samples of a transformation of the CRM. Clearly
the latter type of validation would be ad hoc, since it would depend on the specific
model. For instance, with the very same set of moment-matching realizations of a
gamma process, one could obtain a set of realizations of the Dirichlet process via
normalization and a set gamma mixture hazards by combination with a suitable
kernel. Moreover, given moments of transformed CRMs are typically challenging
to derive, a moment-matching strategy would not be possible in most cases.
Hence, while the quantification of the approximation error does not automatically
translate to transformed CRMs, one can still be confident that the moment-
matching output at the CRM level produces good approximations. That this is
indeed the case is explicitly shown in some practical examples both for prior and
posterior quantities in Section 3.

The outline of the paper is as follows. In Sections 2.1-2.2 we recall the main
properties of CRMs and provide expressions for their moments. In Sections 2.3-
2.4 we describe the Ferguson & Klass algorithm and introduce the measure of
discrepancy between moments used to quantify the approximation error due to
truncation. Section 3 illustrates the moment-matching Ferguson & Klass algo-
rithm for some popular CRMs and CRM-based Bayesian nonparametric models,
namely normalized CRMs and the beta-stable Indian buffet process. Some prob-
abilistic results, discussed in Section 2.3, are given in the Appendix.

2. COMPLETELY RANDOM MEASURES

2.1 Definition and main properties

Let MX be the set of boundedly finite measures on X, which means that if
µ ∈MX then µ(A) <∞ for any bounded set A. X is assumed to be a complete and
separable metric space and both X and MX are equipped with the corresponding
Borel σ-algebras. See Daley and Vere-Jones (2008) for details.

Definition 1. A random element µ̃, defined on (Ω,F ,P) and taking values
in MX, is called a completely random measure (CRM) if, for any collection of
pairwise disjoint sets A1, . . . , An in X, the random variables µ̃(A1), . . . , µ̃(An) are
mutually independent.
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An important feature is that a CRM µ̃ selects (almost surely) discrete measures
and hence can be represented as

(1) µ̃ =
∑
i≥1

JiδZi

where the jumps Ji’s and locations Zi’s are random and independent. In (1) and
throughout we assume there are no fixed points of discontinuity a priori. The
main technical tool for dealing with CRMs is given by their Laplace transform,
which admits a simple structural form known as Lévy–Khintchine representation.
In fact, the Laplace transform of µ̃(A), for any A in X, is given by

(2) LA(u) = E
[
e−λµ̃(A)] = exp

{
−
∫
R+×A

[
1− e−λv

]
ν(dv,dx)

}
for any λ > 0. The measure ν is known as Lévy intensity and uniquely charac-
terizes µ̃. In particular, there corresponds a unique CRM µ̃ to any measure ν on
R+ × X satisfying the integrability condition

(3)
∫
B

∫
R+

min{v, 1}ν(dv,dx) <∞

for any bounded B in X. From an operational point of view this is extremely
useful, since a single measure ν encodes all the information about the jumps Ji’s
and the locations Zi’s. The measure ν will be conveniently rewritten as

(4) ν(dv,dx) = ρ(dv|x)α(dx),

where ρ is a transition kernel on R+ × X controlling the jump intensity and α is
a measure on X determining the locations of the jumps. If ρ does not depend on
x, the CRM is said homogeneous, otherwise it is non-homogeneous.

We now introduce two popular examples of CRMs that we will serve as illus-
trations throughout the paper.

Example 1. The generalized gamma process introduced by Brix (1999) is
characterized by a Lévy intensity of the form

(5) ν(dv,dx) = e−θv

Γ(1− γ)v1+γ dv α(dx),

whose parameters θ ≥ 0 and γ ∈ [0, 1) are such that at least one of them is strictly
positive. Notable special cases are: (i) the gamma CRM which is obtained by
setting γ = 0; (ii) the inverse-Gaussian CRM, which arises by fixing γ = 0.5; (iii)
the stable CRM which corresponds to θ = 0. Moreover, such a CRM stands out
for its analytical tractability. In the following we work with θ = 1, a choice which
excludes the stable CRM. This is justified in our setting because the moments of
the stable process do not exist. See Remark 1.

Example 2. The stable-beta process, or three-parameter beta process, was
defined by Teh and Görür (2009) as an extension of the beta process (Hjort,
1990). Its jump sizes are upper-bounded by 1 and its Lévy intensity on [0, 1]×X
is given by

(6) ν(dv,dx) = Γ(c+ 1)
Γ(1− σ)Γ(c+ σ)v

−σ−1(1− v)c+σ−1dv α(dx),



5

where σ ∈ [0, 1) is termed discount parameter and c > −σ concentration parame-
ter. When σ = 0, the stable-beta process reduces to the beta CRM of Hjort (1990).
Moreover, if c = 1 − σ, it boils down to a stable CRM where the jumps larger
than 1 are discarded.

2.2 Moments of a CRM

For any measurable set A of X, the n-th (raw) moment of µ̃(A) is defined by

mn(A) = E
[
µ̃n(A)

]
.

In the sequel the multinomial coefficient is denoted by
( n
k1···kn

)
= n!

k1!...kn! . In the
next proposition we collect known results about moments of CRMs which are
crucial for our methodology.

Proposition 1. Let µ̃ be a CRM with Lévy intensity ν(dv,dx). Then the
i-th cumulant of µ̃(A), denoted by κi(A), is given by

κi(A) =
∫
R+×A

viν(dv,dx),

which, in the homogeneous case ν(dv,dx) = ρ(dv)α(dx), simplifies to

κi(A) = α(A)
∫ ∞

0
viρ(dv).

The n-th moment of µ̃(A) is given by

mn(A) =
∑
(∗)

( n
k1···kn)

n∏
i=1

(
κi(A)/i!

)ki ,
where the sum (∗) is over all n-tuples of nonnegative integers (k1, . . . , kn) satis-
fying the constraint k1 + 2k2 + · · ·+ nkn = n.

A proof is given in the Appendix.

In the following we focus on (almost surely) finite CRMs i.e. µ̃(X) <∞. This
is motivated by the fact that most Bayesian nonparametric models, but also
models in other application areas, involve finite CRMs. Hence, we assume that the
measure α in (3) is finite i.e. α(X) := a ∈ (0,∞). This is a sufficient condition for
µ̃(X) < ∞ in the non-homogeneous case and also necessary in the homogeneous
case (see e.g. Regazzini et al., 2003). A common useful parametrization of α is
then given as aP ∗ with P ∗ a probability measure and a a finite constant. Note
that, if µ̃(X) = ∞, one could still identify a bounded set of interest A and the
whole following analysis carries over by replacing µ̃(X) with µ̃(A).

As we shall see in Section 2.3, the key quantity for evaluating the truncation
error is given by the random total mass of the CRM, µ̃(X). Proposition 1 shows
how the moments mn = mn(X) can be obtained from the cumulants κi = κi(X)
and, in particular, the relations between the first four moments and the cumulants
are

m1 = κ1, m2 = κ2
1 + κ2, m3 = κ3

1 + 3κ1κ2 + κ3, m4 = κ4
1 + 6κ2

1κ2 + 4κ1κ3 + 3κ2
2 + κ4.
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CRM Cumulants Moments

κi m1 m2 m3 m4

G a(i− 1)! a a(2) a(3) a(4)

IG a(1/2)(i−1) a a2 + 1
2a a3 + 3

2a
2 a4 + 3a3

+ 3
4a + 15

4 a
2 + 15

8 a

GG a(1− γ)(i−1) a a2 + a(1−γ) a3 + 3a2(1−γ) a4 + 6a3(1−γ)

+a(1−γ)(2) +a2(1−γ)(11−7γ) + a(1−γ)(3)

B a (i−1)!
(c+1)(i−1)

a a2 + a
c+1 a3 + 3a2

c+1 a4 + 6a3

c+1 + 8a2

(c+1)(2)

+ 2a
(c+1)(2)

+ 3a2

(c+1)2 + 6a
(c+1)(3)

SB a
(1−σ)(i−1)
(c+1)(i−1)

a a2 + a 1−σ
c+1 a3 + 3a2 1−σ

c+1 a4 + 6a3 1−σ
c+1 + 4a2 (1−σ)(2)

(c+1)(2)

+a (1−σ)(2)
(c+1)(2)

+3a2 (1−σ)2

(c+1)2 + a
(1−σ)(3)
(c+1)(3)

Table 1
Cumulants and first four moments of the random total mass µ̃(X) for the gamma (G),
inverse-Gaussian (IG), generalized gamma (GG), beta (B) and stable-beta (SB) CRMs.

With reference to the two examples considered in Section 2.1, in both cases the
expected value of µ̃(X) is a, which explains the typical terminology total mass
parameter attributed to a. For the generalized gamma CRM the variance is given
by Var(µ̃(X)) = a(1−γ), which shows how the parameter γ affects the variability.
Moreover, κi = a(1 − γ)(i−1) with x(k) = x(x + 1) . . . (x + k − 1) denoting the
ascending factorial. As for the stable-beta CRM, we have Var(µ̃(X)) = a1−σ

c+1
with both discount and concentration parameter affecting the variability, and
also κi = a

(1−σ)(i−1)
(1+c)(i−1)

. Table 1 summarizes the cumulants κi and moments mn for
the random total mass µ̃(X) for the generalized gamma (assuming as in Example
1 θ = 1), stable-beta CRMs and some of their special cases.

Remark 1. The stable CRM, which can be derived from the generalized
gamma CRM by setting θ = 0, does not admit moments. Hence, it cannot be
included in our moment-matching methodology. However, the stable CRM with
jumps larger than 1 discarded, derived from the stable-beta process by setting
c = 1 − σ, has all moments. Moreover, even when working with the standard
stable CRM, posterior quantities typically involve an exponential updating of
the Lévy intensity (see Lijoi and Prünster, 2010), which makes the corresponding
moments finite. This then allows to apply the moment matching methodology to
the posterior.

2.3 Ferguson & Klass algorithm

For notational simplicity we present the Ferguson & Klass algorithm for the
case X = R. However, note that it can be readily extended to more general
Euclidean spaces (see e.g. Orbanz and Williamson, 2012). Given a CRM

(7) µ̃ =
∞∑
i=1

JiδZi ,
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the Ferguson & Klass representation consists in expressing random jumps Ji
occurring at random locations Zi in terms of the underlying Lévy intensity.
In particular, the random locations Zi, conditional on the jump sizes Ji, are
obtained from the distribution function FZi|Ji given by

FZi|Ji(s) = ν(dJi, (−∞, s])
ν(dJi,R) .

In the case of a homogeneous CRM with Lévy intensity ν(dv,dx) = ρ(dv) aP ∗(dx),
the jumps are independent of the locations and, therefore FZi|Ji = FZi implying
that the locations are i.i.d. samples from P ∗.
As far as the random jumps are concerned, the representation produces them in
decreasing order, that is, J1 ≥ J2 ≥ · · · . Indeed, they are obtained as ξi = N(Ji),
where N(v) = ν([v,∞),R) is a decreasing function, and ξ1, ξ2, . . . are jump times
of a standard Poisson process (PP) of unit rate i.e. ξ1, ξ2 − ξ1, . . .

i.i.d.∼ Exp(1).
Therefore, the Ji’s are obtained by solving the equations ξi = N(Ji). In general,
this is achieved by numerical integration, e.g., relying on quadrature methods (see,
e.g. Burden and Faires, 1993). For specific choices of the CRM, it is possible to
make the equations explicit or at least straightforward to evaluate. For instance,
if µ̃ is a generalized gamma process (see Example 1), the function N takes the
form

(8) N(v) = a

Γ(1− γ)

∫ ∞
v

e−uu−(1+γ) du = a

Γ(1− γ)Γ(v;−γ),

with Γ( · ; · ) indicating an incomplete gamma function. If µ̃ is the stable-beta
process, one has
(9)

N(v) = a
Γ(c+ 1)

Γ(1− σ)Γ(c+ σ)

∫ 1

v
u−σ−1(1−u)c+σ−1 du = a

Γ(c+ 1)
Γ(1− σ)Γ(c+ σ)B(1−v; c+σ,−σ),

where B( · ; · , · ) denotes the incomplete beta function.

Hence, the Ferguson & Klass algorithm can be summarized as follows.
Algorithm 1 Ferguson & Klass algo-
rithm
1: Sample ξi ∼ PP for i = 1, . . . ,M
2: Define Ji = N−1(ξi) for i = 1, . . . ,M
3: Sample Zi ∼ P ∗ for i = 1, . . . ,M
4: Approximate µ̃ by

∑M

i=1 JiδZi

Since it is impossible to sample an infinite number of jumps, approximate
simulation of µ̃ is in order. This becomes a question of determining the number
M of jumps to sample in (7) leading to the truncation

(10) µ̃ ≈ µ̃M =
M∑
i=1

JiδZi ,

with approximation error in terms of the un-sampled jumps equal to
∑∞
i=M+1 Ji.

The Ferguson & Klass representation has the key advantage of generating the
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jumps in decreasing order implicitly minimizing such an approximation error.
Then, the natural path to determining the truncation level M would be the
evaluation of the Ferguson & Klass tail sum

(11)
∞∑

i=M+1
N−1(ξi).

Brix (1999, Theorem A.1) provided an upper bound for (11) in the generalized
gamma case. In Proposition 4 of Appendix B we derive also an upper bound
for the tail sum of the stable-beta process. However, both bounds are far from
sharp and therefore of little practical use as highlighted in Appendix B. This
motivates the idea of looking for a different route and our proposal consists in
the moment-matching technique detailed in the next section.

2.4 Moment-matching criterion

Our methodology for assessing the quality of approximation of the Ferguson
& Klass algorithm consists in comparing the actual distribution of the random
total mass µ̃(X) with its empirical counterpart, where by empirical distribution
we mean the distribution obtained by the sampled trajectories, i.e. by replacing
random quantities by Monte Carlo averages of their sampled trajectories. In par-
ticular, based on the fact that the first K moments carry much information about
a distribution, theoretical and empirical moments of µ̃(X) are compared.

The infinite vector of jumps is denoted by J = (Ji)∞i=1 and a vector of jumps
sampled by the Ferguson & Klass algorithm by J (l) = (J (l)

1 , . . . , J
(l)
M ). Here, l =

1, . . . , NFK stands for the l-th iteration of the algorithm, i.e. for the l-th sampled
realization. We then approximate the expectation E of a statistic of the jumps,
say S(J), by the following empirical counterpart, denoted by EFK,

(12) E
[
S(J)] ≈ EFK

[
S(J)] := 1

NFK

NFK∑
l=1

S
(
J (l)).

Note that there are two layers of approximation involved in (12): first, only a
finite number of jumps M is used; second, the actual expected value is estimated
through an empirical average which typically conveys on Monte Carlo error. The
latter is not the focus of the paper, so we take a large enough number of trajec-
tories, NFK = 104, in order to insure a limited Monte Carlo error of the order
of 0.01. We focus on the first approximation inherent to the Ferguson & Klass
algorithm.

More specifically, as far as moments are concerned, mK = (m1, . . . ,mK) de-
notes the first K moments of the random total mass µ̃(X) =

∑∞
i=1 Ji provided

in Section 2.2 and m̂K = (m̂1, . . . , m̂K) indicates the first K empirical moments
given by

(13) m̂n = EFK

( M∑
i=1

Ji

)n .
As measure of discrepancy between theoretical and empirical moments, a nat-

ural choice is given by the mean squared error between the vectors of moments
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or, more precisely, between the n-th roots of theoretical and empirical moments

(14) ` = `(mK , m̂K) =
( 1
K

K∑
n=1

(
m1/n
n − m̂1/n

n

)2)1/2
.

When using the Ferguson & Klass representation for computing the empirical
moments the index ` depends on the truncation level M and we highlight such
a dependence by using the notation `M . Of great importance is also a related
quantity, namely the number of jumps necessary for achieving a given level of
precision, which essentially consists in inverting `M and is consequently denoted
by M(`).

The index of discrepancy (14) clearly also depends on K, the number of mo-
ments used to compute it and 1/K in (14) normalizes the indices in order to make
them comparable as K varies. A natural question is then about the sensitivity
of (14) w.r.t. K. It is desirable for `M to capture fine variations between the
theoretical and empirical distributions, which is assured for large K. In extensive
simulation studies not reported here we noted that increasing K in the range
{1, . . . , 10} makes the index increase and then plateau and this holds for all pro-
cesses and parameter specifications used in the paper. Recalling also the whole
body of work by Pearson on eponymous curves, which shows that the knowledge
of four moments suffices to cover a large number of known distributions, we ad-
here to his rule of thumb and choose K = 4 in our analyses. On the one hand it
is a good compromise between targeted precision of the approximation and speed
of the algorithm. On the other hand it is straightforward to check the results as
K varies in specific applications; for the ones considered in the following sections
the differences are negligible.

In the literature several heuristic indices based on the empirical jump sizes
around the level of truncation have been discussed (cf Remark 3 in Barrios et al.,
2013). Here, in order to compare such procedures with our moment criterion, we
consider the relative error index which is based on the jumps themselves. It is
defined as the expected value of the relative error between two consecutive partial
sums of jumps. Its empirical counterpart is denoted by eM and given by

(15) eM = EFK

[
JM∑M
i=1 Ji

]
.

3. APPLICATIONS TO BAYESIAN NONPARAMETRICS

In this section we concretely implement the proposed moment-matching Fer-
guson & Klass algorithm to several Bayesian nonparametric models. The perfor-
mance in terms of both a priori and a posteriori approximation is evaluated. A
comparison of the quality of approximation resulting from using (15) as bench-
mark index is provided.

3.1 A priori simulation study

We start by investigating the performance of the proposed moment-matching
version of the Ferguson & Klass algorithm w.r.t. the CRMs defined in Examples 1
and 2, namely the generalized gamma and stable-beta processes. Figure 1 displays
the behaviour of both the moment-matching distance `M (left panel) and the
relative jumps’ size index eM (right panel) as the truncation level M increases.
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The plots, from top to bottom, correspond to: the generalized gamma process
with varying γ and a = 1 fixed; the inverse-Gaussian process with varying total
mass a (which is a generalized gamma process process with γ = 0.5); the stable-
beta process with varying discount parameter σ and a = 1 fixed.

First consider the behaviour of the indices as the parameter specifications
vary. It is apparent that, for any fixed truncation level M , the indices `M and
eM increase as each of the parameters a, γ or σ increases. For instance, roughly
speaking, a total mass parameter a corresponds to sampling trajectories defined
on the interval [0, a] (see Regazzini et al., 2003), and a larger interval worsens the
quality of approximation for any given truncation level. Also it is natural that γ
and σ impact in similar way `M and eM given they stand for the “stable” part
of the Lévy intensity. See first and third rows of Figure 1.

As far as the comparison between `M and eM is concerned, it is important
to note that eM consistently downplays the error of approximation related to
the truncation. This can be seen by comparing the two columns of Figure 1. `M
is significantly more conservative than eM for both the generalized gamma and
the stable-beta processes, especially for increasing values of the parameters γ,
a or σ. This indicates quite a serious issue related to eM as a measure for the
quality of approximation and one should be cautious when using it. In contrast,
the moment-matching index `M matches more accurately the known behaviour
of these processes as the parameters vary.

By reversing the viewpoint and looking at the truncation level M(`) needed for
achieving a certain error of approximation ` in terms of moment-match, the results
become even more intuitive. We set ` = 0.1 and computed M(`) on a grid of size
20× 20 with equally-spaced points for the parameters (a, γ) ∈ (0, 2)× (0, 0.8) for
the generalized gamma process and (a, c) ∈ (0, 2) × (0, 30) for the beta process.
Figure 2 displays the corresponding plots. In general, it is interesting to note
that a limited number of jumps is sufficient to achieve good precision levels.
Analogously to Figure 1, larger values of the parameters require a larger number
of jumps to achieve a given precision level. In particular, when γ > 0.5, one needs
to sample a significantly larger number of jumps. For instance, in the generalized
gamma process case, with a = 1, the required number of jumps increases from
28 to 53 when passing from γ = 0.5 to γ = 0.75. It is worth noting that for the
normalized version of the generalized gamma process, to be discussed in Section
3.2 and quite popular in applications, the estimated value of γ rarely exceeds
0.75 in species sampling, whereas it is typically in the range [0.2, 0.4] in mixture
modeling.

3.2 Normalized random measures with independent increments
Having illustrated the behaviour of the moment-matching methodology for

plain CRMs we now investigate it on specific classes of nonparametric priors,
which typically involve a transformation of the CRM. Moreover, given their pos-
terior distributions involve updated CRMs it is important to test the moment-
matching Ferguson & Klass algorithm also on posterior quantities. The first class
of models we consider are normalized random measures with independent incre-
ments (NRMI) introduced by Regazzini et al. (2003). Such nonparametric priors
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Fig 1: Left panel: `M as M varies; right panel: eM as M varies. Top row: gener-
alized gamma process (GG) with varying γ and a = 1 fixed; middle row: inverse-
Gaussian process (IG), γ = 0.5, with varying total mass a; bottom row: stable-
beta process (SBP) with a = 1, c = 0.5 fixed and varying discount parameter σ.
The points are connected by straight lines only for visual simplification.

have been used as ingredients of a variety of models and in several application
contexts. Recent reviews can be found in Lijoi and Prünster (2010); Barrios et al.
(2013).

If µ̃ is a CRM with Lévy intensity (4) such that 0 < µ̃(X) <∞ (almost surely),
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Fig 2: Number of jumps M(`) required to achieve a precision level of ` = 0.1 for
`M . Left panel: generalized gamma process for a ∈ (0, 2) and γ ∈ (0, 0.8). Right
panel: beta process for a ∈ (0, 2) and c ∈ (0, 30).

then an NRMI is defined as

(16) P̃ = µ̃

µ̃(X) .

Particular cases of NRMI are then obtained by specifying the CRM in (16). For
instance, by picking the generalized gamma process defined in Example 1 one
obtains the normalized generalied gamma process, denoted by NGG, and first
used in a Bayesian context by Lijoi et al. (2007).

3.2.1 Posterior Distribution of an NRMI The basis of any Bayesian inferential
procedure is represented by the posterior distribution. In the case of NRMIs, the
determination of the posterior distribution is a challenging task since one cannot
rely directly on Bayes’ theorem (the model is not dominated) and, with the excep-
tion of the Dirichlet process, NRMIs are not conjugate as shown in James et al.
(2006). Nonetheless, a posterior characterization has been established in James
et al. (2009) and it turns out that, even though NRMIs are not conjugate, they
still enjoy a sort of “conditional conjugacy.” This means that, conditionally on a
suitable latent random variable, the posterior distribution of an NRMI coincides
with the distribution of an NRMI having fixed points of discontinuity located at
the observations. Such a simple structure suggests that when working with a gen-
eral NRMI, instead of the Dirichlet process, one faces only one additional layer
of difficulty represented by the marginalization with respect to the conditioning
latent variable.

Before stating the posterior characterization to be used with our algorithm, we
need to introduce some notation and basic facts. Let (Yn)n≥1 be an exchangeable
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sequence directed by an NRMI, i.e.

Yi|P̃
i.i.d.∼ P̃ , for i = 1, . . . , n,

(17)
P̃ ∼ Q,

with Q the law of NRMI, and set Y = (Y1, . . . , Yn). Due to the discreteness of
NRMIs, ties will appear with positive probability in Y and, therefore, the sample
information can be encoded by the Kn = k distinct observations (Y ∗1 , . . . , Y ∗k )
with frequencies (n1, . . . , nk) such that

∑k
j=1 nj = n. Moreover, introduce the

nonnegative random variable U such that the distribution of [U |Y] has density,
w.r.t. the Lebesgue measure, given by

(18) fU |Y(u) ∝ un−1 exp
{
−ψ(u)

} k∏
j=1

τnj
(
u|Y ∗j

)
,

where τnj (u|Y ∗j ) =
∫∞

0 vnje−uvρ(dv|Y ∗j ) and ψ is the Laplace exponent of µ̃ de-
fined by ψ(u) = − log

(
LX(u)

)
, cf (2). Finally, assume P ∗ = E[P̃ ] to be nonatomic.

Proposition 2 (James et al., 2009). Let (Yn)n≥1 be as in (17) where P̃
is an NRMI defined in (16) with Lévy intensity as in (4). Then the posterior
distribution of the unnormalized CRM µ̃, given a sample Y, is a mixture of the
distribution of [µ̃|U,Y] with respect to the distribution of [U |Y]. The latter is
identified by (18), whereas [µ̃|U = u,Y] is equal in distribution to a CRM with
fixed points of discontinuity at the distinct observations Y ∗j ,

(19) µ̃∗ +
k∑
j=1

J∗j δY ∗
j

such that:

(a) µ̃∗ is a CRM characterized by the Lévy intensity

(20) ν∗(dv,dx) = e−uvν(dv,dx),

(b) the jump height J∗j corresponding to Y ∗j has density, w.r.t. the Lebesgue
measure, given by

(21) f∗j (v) ∝ vnje−uvρ
(
dv|Y ∗j

)
,

(c) µ̃∗ and J∗j , j = 1, . . . , k, are independent.

Moreover, the posterior distribution of the NRMI P̃ , conditional on U , is given
by

(22) [P̃ |U,Y] d= w
µ̃∗

µ̃∗(X) + (1− w)
∑k
k=1 J

∗
j δY ∗

j∑k
l=1 J

∗
l

,

where w = µ̃∗(X)/(µ̃∗(X) +
∑k
l=1 J

∗
l ).
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In order to simplify the notation, in the statement we have omitted explicit
reference to the dependence on [U |Y] of both µ̃∗ and {J∗j : j = 1, . . . , k}, which
is apparent from (20) and (21). A nice feature of the posterior representation of
Proposition 2 is that the only quantity needed for deriving explicit expressions
for particular cases of NRMI is the Lévy intensity (4). For instance, in the case
of the generalized gamma process, the CRM part µ̃∗ in (19) is still a generalized
gamma process characterized by a Lévy intensity of the form of (5)

(23) ν∗(dv,dy) = e−(1+u)v

Γ(1− γ)v1+γ dv aP ∗(dy).

Moreover, the distribution of the jumps (21) corresponding to the fixed points
of discontinuity Y ∗j ’s in (19) reduces to a gamma distribution with density

(24) f∗j (v) = (1 + u)nj−γ

Γ(nj − γ) vnj−γ−1e−(1+u)v.

Finally, the conditional distribution of the non-negative latent variable U given
Y (18) is given by

(25) fU |Y(u) ∝ un−1(u+ 1)kγ−n exp
{
−a
γ

(u+ 1)γ
}
.

The availability of this posterior characterization makes it then possible to
determine several important quantities such as the predictive distributions and
the induced partition distribution. See James et al. (2009) for general NRMI and
Lijoi et al. (2007) for the subclass of normalized generalized gamma processes.
See also Argiento et al. (2016) for another approach to approximate the NGG
with a finite number of jumps.

3.2.2 Moment-matching for posterior NRMI From (19) it is apparent that the
posterior of the unnormalized CRM µ̃, conditional on the latent variable U , is
composed of the independent sum of a CRM µ̃∗ and fixed points of discontinuity
at the distinct observations Y ∗j . The part which is at stake here is obviously
µ̃∗ for which only approximate sampling is possible. As for the fixed points of
discontinuities, they are independent from µ̃∗ and can be sampled exactly, at
least in special cases.

We focus on the case of the NGG process. By (20) the Lévy intensity of µ̃∗
is obtained by exponentially tilting the Lévy intensity of the prior µ̃. Hence, the
Ferguson & Klass algorithm applies in the same way as for the prior. The sampling
of the fixed points jumps is straightforward from the gamma distributions (24). As
far as the moments are concerned, key ingredient of our algorithm, the cumulants
of µ̃∗ are equal to κ∗i = a

(1−γ)(i−1)
(u+1)i−γ and the corresponding moments are then

obtained via Proposition 1.
Our simulation study is based on a sample of size n = 10. Such a small sample

size is challenging in the sense that the data provide rather few information and
the CRM part of the model is still prevalent. We examine three possible clustering
configurations of the observations Y ∗i s: (i) k = 1 group, with n1 = 10, (ii) k = 3
groups, with n1 = 1, n2 = 3, n3 = 6, and (iii) k = 10 groups, with nj = 1 for
j = 1, . . . , 10. First let us consider the behaviour of fU |Y, which is illustrated in
Figure 3 for n = 10 and k ∈ {1, 2, . . . , 10}. It is clear that the smaller the number
of clusters, the more fU |Y is concentrated on small values, and vice versa.
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Fig 3: NGG posterior: density fU |Y with n = 10 observations, a = 1, γ = 0.5,
and number of clusters k ∈ {1, . . . , 10}; k = 1 corresponds to the most peaked
density and k = 10 to the flattest.

Now we consider µ̃∗(X), the random total mass corresponding to the CRM
part of the posterior only given in (22). Such a quantity depends on U whose
distribution is driven by the data Y. In order to keep the presentation as neat as
possible, and in the same time to remain consistent with the data, we choose to
condition on U = u for u equal to the mean of fU |Y, the most natural represen-
tative value. Given this, it is possible to run the Ferguson & Klass algorithm on
the CRM part µ̃∗ of the posterior and compute moment-matching index `M as
the number of jumps varies. Figure 4 shows these results for the inverse-Gaussian
CRM, a special case of the generalized gamma process corresponding to γ = 0.5.
Such posteriors were sampled under the above mentioned Y clustering configu-
ration scenarios (i)-(iii), which led to mean values of U |Y of, respectively, 6.3,
8.9 and 25.1. The plot also displays a comparison to the prior values of `M and
indicates that for a given number of jumps the approximation error, measured in
terms of `M , is smaller for the posterior CRM part µ̃∗ w.r.t. to the prior CRM µ̃.

Additionally, instead of considering only the CRM part µ̃∗ of the posterior, one
may be interested in the quality of the full posterior which includes also the fixed
discontinuities. For this purpose we consider an index which is actually of interest
in its own. In particular, we evaluate the relative importance of the CRM part
w.r.t. the part corresponding to the fixed points of discontinuity in terms of the
ratio E

(∑k
j=1 J

∗
j

)
/E
(
µ̃∗(X)

)
. Loosely speaking one can think of the numerator as

the expected weight of the data and the denominator as the expected weight of
the prior. Recall that in the NGG case, for a given pair (n, k) and conditional on
U = u, the sum of fixed location jumps is a gamma(n − kγ, u + 1). Hence, the
index becomes

(26)
E
(∑k

j=1 J
∗
j |U = u

)
E
(
µ̃∗(X)|U = u

) = (n− kγ)/(u+ 1)
a/(u+ 1)1−γ = n− kγ

a(u+ 1)γ .

By separately mixing the conditional expected values in (26) over fU |Y (we
use an adaptive rejection algorithm to sample from fU |Y) we obtained the re-
sults summarized in the table of Figure 4. We can appreciate that the fixed part
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typically overcomes (or is at least of the same order than) the CRM part, a phe-
nomenon which uniformly accentuates as the sample size n increases. Returning
to the original problem of measuring the quality of approximation in terms of
moment matching, these findings make it apparent that the comparative results
of Figure 4 between prior and posterior are conservative. In fact, if performing the
moment-match on the whole posterior, i.e. including the fixed jumps which can
be sampled exactly, the corresponding moment-matching index would, for any
given truncation level M , indicate a better quality of approximation w.r.t. the
index based solely on µ̃∗. Note that computing the moments of µ̃∗(X) +

∑k
i=1 Ji

straightforward given the independence between µ̃∗ and the fixed jumps Ji’s and
also among the jumps themselves. From a practical point of view the findings of
this section suggest that a given quality of approximation ` in terms of moment-
match for the prior represents an upper bound for the quality of approximation
in the posterior.
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(∑k

j=1 J
∗
j

)
/E
(
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)
k \ n 10 30 100

1 3.34 7.30 13.50
√
n 2.65 4.68 6.05

n 0.89 0.98 0.99

Fig 4: Inverse-Gaussian process (γ = 0.5) with a = 1. Left: Moment-matching
errors `M as the number of jumps M varies. `M corresponding to prior µ̃ (con-
tinuous line) and posterior µ̃∗ under Y clustering scenarios (i) (dashed line),
(ii) (dotted line), (iii) (dotted-dashed line). Right: Index of relative importance
E
(∑k

j=1 J
∗
j

)
/E
(
µ̃∗(X)

)
for varying (n, k).

3.2.3 A note on the inconsistency for diffuse distributions In the context of
Gibbs-type priors, of which the normalized generalized gamma process is a special
case, De Blasi et al. (2012) showed that, if the data are generated from a “true”
P0, the posterior of P̃ concentrates at a point mass which is the linear combination

bP ∗(·) + (1− b)P0(·)

of the prior guess P ∗ = E(P̃ ) and P0. The weight b depends on the prior and,
indirectly, on P0, since P0 dictates the rate at which the distinct observations k
are generated. For a diffuse P0, all observations are distinct and k = n (almost
surely). In the NGG case this implies that b = γ and hence the posterior is
inconsistent since it does not converge to P0. For the inverse-Gaussian process,
i.e. with γ = 0.5, the posterior distribution gives asymptotically the same weight
to P ∗ and P0. The last row of the table of Figure 4, which displays the ratio
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E
(∑k

j=1 J
∗
j

)
/E
(
µ̃∗(X)

)
for k = n, is an illustration of this inconsistency result

since the ratio gets close to 1 as n grows. In contrast, when P0 is discrete, which
implies that k increases at a slower rate than n, one always has consistency.
This is illustrated by the first two rows of the table of Figure 4, where one can
appreciate that the ratio E

(∑k
j=1 J

∗
j

)
/E
(
µ̃∗(X)

)
increases as n increases, giving

more and more weight to the data. These findings suggest that consistency issues
for general NRMI could be explored from new perspectives based on the study
of the asymptotic behavior of fU |Y, which will be subject to future work.

3.3 Stable-beta Indian buffet process

The Indian buffet process (IBP), introduced in Ghahramani and Griffiths
(2005), is one of the most popular models for feature allocation and is closely
connected to the beta process discussed in Example 2. In fact, when marginaliz-
ing out the Dirichlet process and considering the resulting partition distribution
one obtains the well known Chinese restaurant process. Likewise, as shown in
Thibaux and Jordan (2007), when integrating out a beta process in a Bernoulli
process (BeP) model one obtains the IBP. Recall that a Bernoulli process, with
an atomic base measure µ̃, is a stochastic process whose realizations are collec-
tions of atoms of mass 1, with possible locations given by the atoms of the base
measure µ̃. Such an atom is element of the collection with probability given by
the jump size in µ̃. Later, Teh and Görür (2009) generalized the construction and
defined the stable-beta Indian buffet process as

Yi|µ̃
i.i.d.∼ BeP(µ̃) for i = 1, . . . , n,

(27)
µ̃|c, σ, aP ∗ ∼ SBP(c, σ, aP ∗).

Given the construction involves a CRM, it is clear that any conditional sim-
ulation algorithm will need to rely on some truncation for which we use our
moment-matching Ferguson & Klass algorithm.

3.3.1 Posterior distribution in the IBP Let us consider a conditional iid sam-
ple Y = (Y1, . . . , Yn) as in (27). Note that due to the discreteness of µ̃, ties
appear with positive probability. We adopt the same notations for the ties Y ∗j
and frequencies nj as in Section 3.2. Then we can state the following result which
highlights the posterior structure of the stable-beta process in the Indian buffet
process.

Proposition 3 (Teh and Görür, 2009). Let (Yn)n≥1 be as in (27). Then the
posterior distribution of µ̃ conditional on Y is given by the distribution of

µ̃∗ +
k∑
j=1

J∗j δY ∗
j

where

(a) µ̃∗ is a stable-beta process characterized by the Lévy intensity

ν∗(dv,dx) = (1− v)nν(dv,dx),

(b) the jump height J∗j corresponding to Y ∗j is beta distributed

J∗j ∼ beta(nj − σ, c+ σ + n− nj),
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(c) µ̃∗ and J∗j , j = 1, . . . , k, are independent.

Note that due to the polynomial tilting of ν by (1−u)n in (a) above, the CRM
part µ̃∗ is still a stable-beta process with updated parameters

c∗ = c+ n and a∗ = a
(c+ σ)(n)
(c+ 1)(n)

,

while the discount parameter σ remains unchanged.

3.3.2 Moment-matching for the IBP In order to implement the moment-matching
methodology we first need to evaluate the posterior moments of the random total
mass. For this purpose, we rely on the moments characterization in terms of the
cumulants provided in Proposition 1. The cumulants κ∗i of the CRM part µ̃∗(X)
are obtained from Table 1 with the appropriate parameter updates which leads
to

κ∗i = a∗
(1− σ)(i−1)
(1 + c∗)(i−1)

= a
(1− σ)(i−1)(c+ σ)(n)

(1 + c)(n+i−1)
.

We consider two stable-beta processes: the beta process prior µ̃ ∼ SBP(c =
1, σ = 0, a = 1) and the stable-beta process prior µ̃ ∼ SBP(c = 1, σ = 0.5, a = 1).
We let n vary in {5, 10, 20}. In contrast to the NRMI case, there is no need to
work under different scenarios for the clustering profile of the data, since the
posterior CRM µ̃∗ is not affected by them with only the sample size entering the
updating scheme. We compare the prior moment-match for µ̃ with the posterior
moment-match for µ̃∗ in terms of our discrepancy index `M and the results are
displayed in Figure 5. The comparison shows that there is a gain in precision
between prior and posterior distributions in terms of `M suggesting that the a
priori error level ` represents an upper bound for the posterior approximation
error.

As in Section 3.2, we also evaluate the relative weights of fixed jumps and
posterior CRM or, roughly, of the data w.r.t. the prior. Recalling that fixed
location jumps J∗j are independent and beta(nj − σ, c + σ + n − nj) and some
algebra allow to re-write the ratio of interest as

E
(∑k

j=1 J
∗
j

)
E
(
µ̃∗(X)

) =
(n− kσ)(c+ 1)(n−1)

a(c+ σ)(n)
.

Table 2 displays the corresponding values for different choices of n and k. As
in the NRMI case, the fixed part overcomes the CRM part, which means that
the data dominate the prior, and, moreover, their relative weight increases as
n increases. In terms of moment-matching this shows that, if one looks at the
overall posterior structure, the approximation error connected to the truncation
is further dampened.
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Fig 5: Moment-matching errors `M as the number of jumps M varies for the
stable-beta process with c = 1, a = 1, and, respectively, σ = 0 (left panel) and
σ = 0.5 (right panel). `M corresponding to prior µ̃ (continuous line) and the
posterior µ̃∗ given with n = 5 (dashed line) and n = 10 (dotted line) and n = 20
(dashed-dotted line) observations.

E
(∑k

j=1 J
∗
j

)
/E
(
µ∗(X)

)
k \ n 10 30 100

1 2.57 4.71 8.79

nσ 2.28 4.36 8.39

n 1.35 2.40 4.41

Table 2
Stable-beta process with σ = 0.5, c = 1 and a = 1: Index of relative importance

E
(∑k

j=1 J
∗
j

)
/E
(
µ∗(X)

)
for varying (n, k).

3.4 Practical use of the moment-matching criterion

We illustrate the use of the moment-matching strategy by implementing it
within location-scale NRMI mixture models, which can be represented in hierar-
chical form as

Yi|µi, σi
ind∼ k(·|µi, σi), i = 1, . . . , n,

(µi, σi)|P̃
i.i.d.∼ P̃ , i = 1, . . . , n,

P̃ ∼ NRMI,

where k is a kernel parametrized by (µ, σ) ∈ R×R+ and the NRMI P̃ is defined
in (16). Under this framework, density estimation is carried out by evaluating
the posterior predictive density. Specifically, we consider the Gaussian kernel
k(x|µ, σ) = N (x|µ, σ) and NGG on locations and scales with a normal base
measure P0, parameter θ = 1 in Equation (5), and varying stability parameter
γ ∈ {0, 0.25, 0.5, 0.75}.

The dataset we consider is the popular Galaxy dataset, which consists of ve-
locities of 82 distant galaxies diverging from our own galaxy. Since the data are
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clearly away from zero (range from 9.2 to 34), Gaussian kernels, although having
the whole real line as support, are typically employed in its analysis.

As far as the simulation algorithm is concerned, based on Sections 3.1 to 3.3,
the following moment-matching Ferguson & Klass posterior sampling strategy is
implemented: (1) evaluate the threshold M(`) which validates trajectories of the
CRM using Algorithm 1 on the prior distribution; (2) implement Algorithm 1 on
the posterior distribution using the threshold M(`). More elaborate and suitably
tailored moment-matching strategies can be devised for specific models. However,
to showcase the generality and simplicity of our proposal we do not pursue this
here.

In particular, we set `M = 0.01. We compare the output to the Ferguson
& Klass algorithm with heuristic relative error eM criterion, which consists of
step (2) only with truncation dictated by the relative error for which we set
eM ∈ {0.1, 0.05, 0.01}. For both algorithms the Gibbs sampler is run for 20, 000
iterations with a burn-in of 4, 000, thinned by a factor of 5.

In order to compare the results, we compute the Kolmogorov–Smirnov distance
dKS(F̂`M , F̂eM ) between associated estimated cumulative distribution functions
(cdf) F̂`M and F̂eM under, respectively, the moment-match and the relative er-
ror criteria. The results are displayed in Table 3. The estimated cdf F̂`M with
`M = 0.01 can be seen as a reference estimate since the truncation error is con-
trolled uniformly across the different values of γ by the moment-match at the
CRM level. First, one immediately notes that the smaller eM , the closer the
two estimates become (in the dKS distance). Second, and more importantly, the
numerical values of the distances heavily depend on the particular choice of the
parameter γ for any given eM . In fact, F̂`M and F̂eM are significantly further apart
for large values of γ than for small ones. This clearly shows that the quality of
approximation with the heuristic criterion of the relative index is highly variable
in terms of a single parameter; in passing from γ = 0 to γ = 0.75 the distance
increases by at least a factor of 2. This means that for comparing correctly CRM
based models with different parameters one would need to pick different relative
indices for each value of the parameter. However, there is no way to guess such
thresholds without the guidance of an analytic criterion. And, this already hap-
pens by varying a single parameter, let alone when changing CRMs for which
the same eM could imply drastically different truncation errors. This seems quite
convincing evidence supporting the abandonment of heuristic criteria for deter-
mining the truncation threshold and the adoption of principled approaches such
as the moment-matching criterion proposed in this paper.

APPENDIX A: PROOF OF PROPOSITION 1

For any measurable set A of X, the n-th moment of µ̃(A), if it exists, is given by
mn(A) = (−1)nL(n)

A (0), where L(n)
A (0) denotes the n-th derivative of the Laplace

transform LA in (2) evaluated at 0. The result is proved by applying Faà di
Bruno’s formula to (2) for obtaining the derivatives.

APPENDIX B: EVALUATION OF THE TAIL SUM OF THE
STABLE-BETA PROCESS

Here we provide an evaluation of the tail sum (11) in the case of the stable-beta
process. We start by stating a lemma useful for upper bounding the tail sum.
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γ eM = 0.1 eM = 0.05 eM = 0.01

0 19.4 15.5 9.2

0.25 31.3 23.7 15.1

0.5 42.4 28.9 18.3

0.75 64.8 41.0 23.2

Table 3
Galaxy dataset. Kolmogorov–Smirnov distance dKS(F̂`M , F̂eM ) between estimated cdfs F̂`M and
F̂eM under, respectively, the moment-match (with `M = 0.01) and the relative error (with
eM = 0.1, 0.05, 0.01) criteria. The mixing measure of normal mixture is the normalized

generalized gamma process with varying γ ∈ {0, 0.25, 0.5, 0.75}.

Lemma 1. Let function N( · ) be as in (9) for the stable-beta process. Then
for any ξ > 0

N−1(ξ) ≤


e

1−ξ/a
c if σ = 0,

(αξ + β)−1/σ if σ ∈ (0, 1),

where α = σΓ(1− σ) Γ(c+σ)
aΓ(c+1) and β = 1− σ

c+σΓ(1− σ).

Proof. For σ = 0, from u−1(1 − u)c−1 ≤ u−1 + (1 − u)c−1 one obtains∫ 1
v u
−1(1 − u)c−1du ≤ 1/c − log v. Hence, N(v)/a ≤ 1 − c log v and N−1(ξ) ≤

e(1−ξ/a)/c. The argument for σ 6= 0 follows along the same lines starting from
u−1−σ(1− u)σ+c−1 ≤ Γ(1− σ)u−σ−1 + (1− u)σ+c−1.

Proposition 4. Let (ξj)j≥1 be the jump times for a homogeneous Poisson
process on R+ with unit intensity. Define the tail sum of the stable-beta process
as

TM =
∞∑

j=M+1
N−1(ξj),

where N( · ) is given by (9). Then for any ε ∈ (0, 1),

P
(
TM ≤ tεM

)
≥ 1− ε, for tεM =


C1
ε e

1
c
− εM
C1 if σ = 0,

σ
1−σ

(C2ε)1/σ

(M+βC2/ε)1/σ−1 if σ ∈ (0, 1),

where C1 = 2ace and C2 = 2e/α do not depend on ε.

Proof. The proof follows along the same lines as the proof of Theorem A.1.
in Brix (1999). Let qj denote the ε2M−j quantile, for j = M + 1,M + 2, . . ., of a
gamma distribution with mean and variance equal to j. Then

P
( ∞∑
j=M+1

N−1(ξj) ≤
∞∑

j=M+1
N−1(qj)

)
≥ 1− ε.
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An upper bound on t̃εM =
∑∞
j=M+1N

−1(qj) is then found by resorting to
Lemma 1 along with the inequality qj ≥ ε

2ej. If σ = 0

t̃εM ≤ e1/c
∞∑

j=M+1
e−

qj
ac ≤ e1/c

∞∑
j=M+1

e−
εj

2ace ≤ e1/c 2ace
ε

e−
εM

2ace ,

whereas if σ 6= 0

t̃εM ≤
∞∑

j=M+1
(αqj+β)−

1
σ ≤

∞∑
j=M+1

(
αεj

2e + β

)− 1
σ

=
( 2e
αε

)− 1
σ

∞∑
j=M+1

(
j + 2eβ

αε

)− 1
σ

.

The result follows by bounding the last sum by
∫∞
M

(
x+ 2eβ

αε

)− 1
σ dx.

The bound tεM obtained in Proposition 4 is exponential when σ = 0 and poly-
nomial when σ 6= 0, but it is very conservative as already pointed out by Brix
(1999). This finding is further highlighted in the table associated to Figure 6,
where the bound tεM is computed with appropriate constants derived from the
proof. In contrast, the bound t̃εM obtained by direct calculation of the quantiles
qj (instead of resorting to a lower bound on them) is much sharper. Figure 6
displays the sharper bound t̃εM . Inspection of the plot demonstrates a decrease
pattern in this bound in probability which is reminiscent of the ones for the in-
dices `M and eM studied in the paper. This observation is a further indication
that the Ferguson & Klass algorithm is a tool with well-behaved approximation
error.

M
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SBP: a = 1, c = 1

σ = 0
σ = 0.5

M 25 100 500

tεM
σ = 0 1411 1230 589

σ = 0.5 1554 1250 612

t̃εM
σ = 0 0.942 0.230 0.003

σ = 0.5 1.998 0.534 0.008

Fig 6: Stable-beta process with parameters σ = 0 and σ = 0.5. Left: Bound in
probability t̃εM of the tail sum TM obtained by direct calculation of the quantiles
qj with ε = 10−2 as the truncation level M increases. Right: Bounds tεM (provided
in Proposition 4) and t̃εM (obtained by direct calculation of the quantiles qj) of
the tail sum after M jumps with ε = 10−2.

REFERENCES
Argiento, R., Bianchini, I., and Guglielmi, A. (2015). A priori truncation method for posterior

sampling from homogeneous normalized completely random measure mixture models. arXiv
preprint arXiv:1507.04528.



23

Argiento, R., Bianchini, I., and Guglielmi, A. (2016). A blocked Gibbs sampler for NGG-mixture
models via a priori truncation. Stat. Comput., 26(3):641–661.

Barrios, E., Lijoi, A., Nieto-Barajas, L. E., and Prünster, I. (2013). Modeling with normalized
random measure mixture models. Statist. Sci., 28(3):313–334.

Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Adv. Appl. Prob.,
31:929–953.

Burden, R. and Faires, J. (1993). Numerical Analysis. PWS Publishing Company, Boston.
Campbell, T., Huggins, J., Broderick, T., and How, J. (2015). Truncated completely random

measures. In Bayesian Nonparametrics: The Next Generation (NIPS workshop).
Cont, R. and Tankov, P. (2008). Financial modelling with jump processes. Chapman & Hall /

CRC Press, London.
Daley, D. J. and Vere-Jones, D. (2008). An introduction to the theory of point processes. Vol.

II. General theory and structure. Probability and its Applications.
De Blasi, P., Favaro, S., and Muliere, P. (2010). A class of neutral to the right priors induced

by superposition of beta processes. J. Stat. Plan. Inference, 140(6):1563–1575.
De Blasi, P., Lijoi, A., and Prünster, I. (2012). An asymptotic analysis of a class of discrete

nonparametric priors. Stat. Sin., 23:1299–1322.
Doshi, F., Miller, K., Gael, J. V., and Teh, Y. W. (2009). Variational inference for the Indian

buffet process. In International Conference on Artificial Intelligence and Statistics, pages
137–144.

Epifani, I., Lijoi, A., and Prünster, I. (2003). Exponential functionals and means of neutral-to-
the-right priors. Biometrika, 90(4):791–808.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist.,
1(2):209–230.

Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. Ann. Statist.,
2(4):615–629.

Ferguson, T. S. and Klass, M. J. (1972). A representation of independent increment processes
without Gaussian components. Ann. Math. Stat., 43(5):1634–1643.

Ghahramani, Z. and Griffiths, T. L. (2005). Infinite latent feature models and the Indian buffet
process. In Adv. Neur. In., pages 475–482.

Griffin, J. E. (2016). An adaptive truncation method for inference in bayesian nonparametric
models. Stat. Comput., 26(1-2):423–441.

Griffin, J. E. and Walker, S. G. (2011). Posterior simulation of normalized random measure
mixtures. J. Comput. Graph. Stat., 20(1):241–259.

Hjort, N. L. (1990). Nonparametric bayes estimators based on beta processes in models for life
history data. Ann. Statist., 18(3):1259–1294.

Ishwaran, H. and James, L. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer.
Statist. Assoc., 96(453):161–173.

James, L. F., Lijoi, A., and Prünster, I. (2006). Conjugacy as a distinctive feature of the Dirichlet
process. Scand. J. Statist., 33(1):105–120.

James, L. F., Lijoi, A., and Prünster, I. (2009). Posterior analysis for normalized random
measures with independent increments. Scand. J. Statist., 36(1):76–97.

Jordan, M. I. (2010). Hierarchical models, nested models and completely random measures.
Frontiers of Statistical Decision Making and Bayesian Analysis: in Honor of James O. Berger.
New York: Springer, pages 207–218.

Lijoi, A., Mena, R. H., and Prünster, I. (2007). Controlling the reinforcement in Bayesian
non-parametric mixture models. J. Roy. Stat. Soc. B Met., 69(4):715–740.

Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Hjort, N. L., Holmes,
C. C., Müller, P., and Walker, S. G., editors, Bayesian nonparametrics, pages 80–136. Cam-
bridge University Press, Cambridge.

Nieto-Barajas, L. E. (2014). Bayesian semiparametric analysis of short- and long-term hazard
ratios with covariates. Comput. Stat. Data Anal., 71(0):477–490.

Nieto-Barajas, L. E. and Prünster, I. (2009). A sensitivity analysis for Bayesian nonparametric
density estimators. Stat. Sin., 19(2):685.

Nieto-Barajas, L. E., Prünster, I., and Walker, S. G. (2004). Normalized random measures
driven by increasing additive processes. Ann. Statist., 32(6):2343–2360.

Nieto-Barajas, L. E. and Walker, S. G. (2002). Markov Beta and Gamma Processes for Modelling
Hazard Rates. Scand. J. Statist., 29(3):413–424.

Nieto-Barajas, L. E. and Walker, S. G. (2004). Bayesian nonparametric survival analysis via



24
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