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The proposal and study of dependent prior processes has been a major research focus in the recent Bayesian
nonparametric literature. In this paper, we introduce a flexible class of dependent nonparametric priors,
investigate their properties and derive a suitable sampling scheme which allows their concrete implemen-
tation. The proposed class is obtained by normalizing dependent completely random measures, where the
dependence arises by virtue of a suitable construction of the Poisson random measures underlying the com-
pletely random measures. We first provide general distributional results for the whole class of dependent
completely random measures and then we specialize them to two specific priors, which represent the nat-
ural candidates for concrete implementation due to their analytic tractability: the bivariate Dirichlet and
normalized σ -stable processes. Our analytical results, and in particular the partially exchangeable partition
probability function, form also the basis for the determination of a Markov Chain Monte Carlo algorithm
for drawing posterior inferences, which reduces to the well-known Blackwell–MacQueen Pólya urn scheme
in the univariate case. Such an algorithm can be used for density estimation and for analyzing the clustering
structure of the data and is illustrated through a real two-sample dataset example.

Keywords: completely random measure; dependent Poisson processes; Dirichlet process; generalized
Polýa urn scheme; infinitely divisible vector; normalized σ -stable process; partially exchangeable random
partition

1. Introduction

The construction of dependent random probability measures for Bayesian inference has attracted
considerable attention in the last decade. The seminal contributions of MacEachern [26,27], who
introduced a general class of dependent processes including a popular dependent version of the
Dirichlet process, paved the way to a burst in the literature on (covariate) dependent processes
and their application in a variety of frameworks such as, for example, nonparametric regression,
inference on time series data, meta-analysis, two-sample problems. Reviews and key references
can be found in, for example, [8,29,37]. Most contributions to this line of research rely on random
probability measures defined by means of a stick-breaking procedure, a popular method set forth
in its generality for the first time in [16]. Dependence among different stick-breaking priors is
created by indexing either the stick-breaking weights or the locations or both to relevant covari-
ates. To be more specific, if Z denotes the covariate space and {(ωj,z)j≥1: z ∈ Z} is a collection
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of sequences of independent nonnegative weights, the stick-breaking procedure consists in defin-
ing p1,z = ω1,z and pj,z = ωj,z

∏j−1
i=1 (1 − ωi,z). A typical choice is then ωi,z ∼ Beta(ai,z, bi,z)

with parameters (ai,z, bi,z) such that
∑

j≥1 pj,z = 1, almost surely. If one further considers col-
lections of sequences {(Xi,z)i≥1: z ∈ Z} with the Xi,z, for i ≥ 1, taking values in a space X

and i.i.d. from a nonatomic probability measure P0,z, a covariate dependent random probabil-
ity measure p̃z = ∑

j≥1 pj,zδXj,z
is obtained. The dependence between weights ωi,z and ωj,z′

and/or between the support points Xi,z and Xj,z′ , for z �= z′, induces dependence between p̃z

and p̃z′ . This general framework is then tailored to the specific application at issue. One of the
main reasons of the success of stick-breaking constructions is their attractiveness from computa-
tional point of view along with their flexibility since, as shown in [3], they have full weak support
under mild assumptions. On the other hand, a drawback is represented by the difficulty of study-
ing their distributional properties due to their analytical intractability. In this paper, we propose a
radically different approach to the construction of dependent nonparametric priors that relies on
completely random measures (CRMs) introduced by Kingman [20]. For the case of exchangeable
setting, in [24] it has been shown that CRMs represent a unifying concept of the Bayesian Non-
parametrics given most discrete nonparametric priors can be seen as transformations of CRMs.
Our general plan consists in defining a broad class of dependent CRMs thus obtaining a vector of
dependent random probability measures via a suitable transformation. A relevant motivation for
undertaking such an approach is represented by the consideration that the study of distributional
properties of the models are essential for their deep understanding and sound applications. In this
respect, even though CRMs are infinite-dimensional objects, they can be summarized by a single
measure, that is, their intensity, which allows to derive key distributional properties.

1.1. Dependent Poisson random measures

A key idea of our approach consists in defining dependent CRMs by creating dependence at
the level of the underlying Poisson random measures (PRM). To this end, we resort to a class
of bivariate dependent PRMs devised by Griffiths and Milne in [15]. In particular, let Ñ be a
PRM on Y with intensity measure ν̄. The corresponding Laplace functional transform, which
completely characterizes the PRM, is then given by

E
[
e− ∫

f dÑ
] = e−ν̄(1−e−f )

for any measurable function f : Y → R such that
∫ |f |dÑ < ∞ (a.s.). Recall also that a Cox

process is a PRM with random intensity. See [6] for an exhaustive account. Consider now a
vector of (possibly dependent) PRMs (Ñ1, Ñ2) on Y with the same marginal intensity measure ν̄.
Griffiths and Milne [15] prove that the Ñi ’s admit an additive representation

Ñi = Mi + M0, i = 1,2, (1)

where M1, M2 and M0 are independent Cox processes with respective random intensities ν, ν

and ν0 such that ν0 ≤ ν̄ (a.s.) and ν = ν̄−ν0 if and only if the Laplace transform has the following
form

E
[
e−Ñ1(f1)−Ñ2(f2)

] = e−∑2
i=1 ν̄(1−e−fi )ϕ

((
1 − e−f1

)(
1 − e−f2

))
(2)
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for some functional ϕ. Such a result is appealing for at least two reasons. From an intuition point
of view, it provides a neat additive representation (1) of the Ñi ’s with a common and idiosyncratic
component, M0 and Mi , for i = 1,2, respectively. From an operational point of view, it yields
a well identified structure (2) for the Laplace functional, which becomes completely explicit in
the cases where one is able to determine the form of ϕ. In fact, when working with PRMs and
CRMs, the Laplace functional is the main operational tool for deriving analytical results useful
for Bayesian inference and such a relatively simple structure is actually quite surprising for the
dependent case.

The pair of PRMs constructed according to (1) is, then, used to define a vector of dependent
CRMs (μ̃1, μ̃2). Recall that CRMs are random measures giving rise to mutually independent ran-
dom variables when evaluated on pairwise disjoint measurable sets. Moreover, they can always
be represented as functionals of an underlying PRM, which in the particular case of Y = R

+ ×R
d

corresponds to the celebrated Lévy–Ito decomposition. Therefore, by setting Y = R
+ × X, from

(Ñ1, Ñ2) one can define the corresponding vector of CRMs (μ̃1, μ̃2) with components given by
μ̃i(dx) = ∫

R+ sÑi(ds,dx).

Finally, a vector of dependent random probability measures on X is obtained as (p̃1, p̃2)
d=

(T (μ̃1), T (μ̃2)) where T is a transformation of the CRM such that T (μ̃i)(X) = 1 a.s. Here we fo-
cus on one of the most intuitive transformations, namely “normalization”, which corresponds to
T (μ̃) = μ̃/μ̃(X). Such a normalization procedure is widely used in the univariate case. Already
Ferguson [12] showed that the Dirichlet process can be defined as normalization of a gamma
CRM. Such a procedure has then been extended and analyzed for general univariate CRMs in
[18,19,36]. More recently, an interesting construction of a subclass of normalized CRMs has
been proposed in [32]. See [24] for a review of other commonly used transformations T .

In the literature there are already some proposals, although not in a general framework and
analytical depth as set forth here, making use of dependent CRMs for defining dependent random
probability measures. For example, in [21] and in [35] one can find a model that coincides with
a special case we consider in this paper, namely a version of the bivariate Dirichlet process. In
these two papers, the authors devise samplers that take advantage of a mixture representation
of p̃1 and of p̃2 whose weights are, only for their special case, independent from the p̃i ’s. In a
similar fashion, [28] proposes dependent convex linear combinations of Dirichlet processes as a
tool for examining data originated from different experiments. Vector CRMs, whose dependence
is induced by suitable Lévy copulas, are proposed in [9] for defining a vector of dependent
neutral to the right processes and in [22] in order to introduce a bivariate two-parameter Poisson–
Dirichlet process. In addition to the great generality of our results, two important features of our
proposal are to be highlighted: it preserves computational efficiency since we are able to deduce a
generalization of the Blackwell–MacQueen urn scheme for the dependent setting implementable
in real-world applications, and it sheds light on theoretical properties of the vector of random
probability measures we are proposing, therefore improving the understanding of the model.

1.2. Goals and outline of the paper

As mentioned above, we will investigate vectors of random probabilities (p̃1, p̃2) obtained by
normalizing pairs of dependent CRMs (μ̃1, μ̃2). The distribution of (p̃1, p̃2) plays the role of
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mixing measure in the representation of the law of a pair of partially exchangeable sequences
or, in other terms, of prior distribution for a partially-exchangeable observation process. We will
determine an expression for the probability distribution of the partially exchangeable partition
induced by (p̃1, p̃2). Such a result will also lead us to achieve an extension of the univariate
Blackwell–MacQueen Pólya urn scheme. The corresponding Gibbs sampler is then implemented
to draw a full Bayesian analysis for density estimation and cluster analysis in two-sample prob-
lems. The general results will, then, be specialized to two specific priors where: (i) the μ̃i ’s are
gamma CRMs thus yielding a vector of dependent Dirichlet processes; (ii) the μ̃i ’s are σ -stable
CRMs that give rise to a vector of dependent normalized σ -stable processes.

The outline of the paper is as follows. In Section 2, we introduce some notation and formalize
the form of dependence we briefly touched upon before. In Section 3, we consider pairs of par-
tially exchangeable sequences directed by the distribution of (p̃1, p̃2) and describe some of their
distributional properties. Section 4 considers dependent mixtures and introduces the main distri-
butional tools that are needed for their application to the analysis of partially exchangeable data.
Section 5 provides a description of the prior specification we adopt and the sampler we resort
to. Finally, Section 6 contains an illustration with a real dataset which is analyzed through mix-
ture models with both dependent Dirichlet and normalized σ -stable. The proofs are postponed
to the Appendix. A key tool for proving our results is represented by an extension to the par-
tial exchangeable case of a technique introduced and subsequently refined in [18,19,34]. Such a
technique was originally developed for deriving conditional distributions of normalized random
measures [36] but, as highlighted in [24], it can be actually applied to any exchangeable model
based on completely random measures. Therefore, it is worth remarking that the extension to the
partial exchangeable setup is also of independent interest.

2. Dependent completely random measures

Let us start by stating more precisely some of the concepts sketched in the Introduction. Consider
a probability space (�,F ,P) and denote by MX the set of boundedly finite measures on a
complete and separable metric space X. Further, the Borel σ -algebras on MX and X are denoted
by MX and X, respectively. A completely random measure (CRM) μ on (X,X) is a measurable
function on (�,F ,P) taking values in (MX,MX) such that for any d ≥ 1 and any collection
{A1, . . . ,Ad} of pairwise disjoint sets in X, the random variables μ(A1), . . . ,μ(Ad) are mutually
independent. It is well known that if N is a Poisson random measure on R

+ × X, then

μ(B) =
∫

R+×B

sN(ds,dx) ∀B ∈ X (3)

is a CRM on (X,X). See [6,20] and, for example, [17] for uses of representation (3) for Bayesian
modeling. If ν̄ is the intensity of N and for brevity μ(f ) := ∫

f dμ, the Laplace exponent of
μ(f ) is of the form

− log
(
E

[
e−μ(f )

]) =
∫

R+×X

[
1 − e−sf (x)

]
ν̄(ds,dx) =: ψ(f ) (4)
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for any measurable function f : X → R such that μ(|f |) = ∫ |f |dμ < ∞, almost surely. By
virtue of (3), we can construct dependent CRMs as linear functionals of dependent PRMs de-
termined according to (1). To state it more precisely, let P0 be a nonatomic probability measure
on (X,X) and r(ds) = ρ(s)ds a (possibly infinite) measure on R

+. Suppose, further, that Ñ1

and Ñ2 are defined as in (1), where M1, M2 and M0 are three independent Cox processes with
respective random intensities ν, ν and ν0 such that ν + ν0 = ν̄, almost surely. Henceforth, we
shall assume ν̄(ds,dx) = cP0(dx)ρ(s)ds.

Definition 1. Let (Ñ1, Ñ2) be a vector of Griffiths–Milne (GM) dependent PRMs as in (1) and
define the CRMs μ̃i(dx) = ∫

R+ sÑi(ds,dx), for i = 1,2. Then (μ̃1, μ̃2) is said to be a vector of
GM-dependent CRMs. The marginal intensity of μ̃i coincides with ν̄.

In the sequel, we will focus on a simple class of Cox processes defined through an intensity of
the form

ν(ds,dx) = cZP0(dx)ρ(s)ds (5)

for some [0,1]-valued random variable Z. To ease the exposition, and with no loss of generality,
we will work conditionally on a fixed value Z = z which makes the Cox processes in (1) coincide
with PRMs. According to the definition above, the marginals of a vector of GM-dependent CRMs
are equally distributed and

μ̃i(dx) =
∫

R+
sMi(ds,dx) +

∫
R+

sM0(ds,dx) = μi(dx) + μ0(dx), (6)

where μi , with i = 1,2, and μ0 are independent CRMs with Laplace functional transforms

E
[
e−μi(f )

] = e−czψ(f ), E
[
e−μ0(f )

] = e−c(1−z)ψ(f ),

where ψ is defined as in (4). Given the simple form of the intensities specified in (5), one can
determine the form of ϕ in (2) explicitly and straightforwardly obtains a tractable expression for
the joint Laplace functional transform of (μ̃1, μ̃2) given by

E
[
e−μ̃1(f1)−μ̃2(f2)

] = e−cz[ψ(f1)+ψ(f2)]−c(1−z)ψ(f1+f2) (7)

for any pair of measurable functions fi : X → R, for i = 1,2, such that P[μ̃i(|fi |) < ∞] = 1.
In order to further clarify the above concepts and construction, let us consider two special cases
involving well-known CRMs.

Example 1 (Gamma process). Set ρ(s) = e−ss−1 in (5) which results in μ being a gamma
CRM. The corresponding Laplace exponent reduces to ψ(f ) = ∫

log(1 + f )dP0 for any mea-
surable function f such that

∫
log(1 + |f |)dP0 < ∞. If fi : X → R are, for i = 1,2, measurable

functions such that
∫

log(1 + |fi |)dP0 < ∞, one has

E
[
e−μ̃1(f1)−μ̃2(f2)

] = e−c
∫

log(1+f1+f2)dP0−cz
∫

log (1+f1)(1+f2)/(1+f1+f2)dP0 .



Dependent normalized CRMs 1265

Example 2 (σ -stable process). Set ρ(s) = σs−1−σ /
(1 − σ), with σ ∈ (0,1), in (5) which
results in μ being a σ -stable CRM. The corresponding Laplace exponent reduces to ψ(f ) =∫

f σ dP0 for any measurable function f such that
∫ |f |σ dP0 < ∞. Let fi : X → R be such that∫ |fi |σ dP0 < ∞, for i = 1,2. Then

E
[
e−μ̃1(f1)−μ̃2(f2)

] = e−cz
∫
(f σ

1 +f σ
2 )dP0−c(1−z)

∫
(f1+f2)

σ dP0 .

The final step needed for obtaining the desired vector of dependent random probability mea-
sures consists in normalizing the previously constructed CRMs, in the same spirit as in [36] for
the univariate case. To perform the normalization, we need to ensure P[μi(X) ∈ (0,∞)] = 1,
for i = 0,1,2, which is guaranteed by requesting

∫ ∞
0 ρ(s)ds = ∞ (see [36]) and corresponds to

considering CRMs which jump infinitely often on any bounded set. By normalizing μ̃1 and μ̃2,
we can then define the vector of dependent random probability measures

(p̃1, p̃2)
d= (

μ̃1/μ̃1(X), μ̃2/μ̃2(X)
)

(8)

to be termed GM-dependent normalized CRM in the following.
Having described the main concepts and tools we are resorting to, our next goal is the appli-

cation of (p̃1, p̃2) as a nonparametric prior for the statistical analysis of partially exchangeable
data.

3. Partially exchangeable sequences

For our purposes, we resort to the notion of partial exchangeability as set forth by de Finetti
in [7] and described as follows. Let X = (Xn)n≥1 and Y = (Yn)n≥1 be two sequences of X-
valued random elements defined on some probability space (�,F ,P) and PX is the space of
probability measures on (X,X). If X(n1) = (X1, . . . ,Xn1) and Y(n2) = (Y1, . . . , Yn2) are the first
n1 and n2 values of the sequences X and Y , respectively, we have

P
[
X(n1) ∈ A1,Y(n2) ∈ A2

] =
∫

P 2
X

p
n1
1 (A1)p

n2
2 (A2)�(dp1,dp2) (9)

for any A1 ∈ Xn1 , A2 ∈ Xn2 , with p
ni

i being the n-fold product measure pi × · · · × pi and �

is a probability distribution on P 2
X

= PX × PX which acts as nonparametric prior for Bayesian
inference. We also denote as �i the marginal distribution of p̃i on PX. Since p̃i is a normalized
CRM, then the weak support of �i contains all probability measures on X whose support is
contained in the support of the base measure P0. Hence, if the support of P0 coincides with X,
a GM-dependent normalized CRM (p̃1, p̃2) has full weak support with respect to the product
topology on P 2

X
. Having a large support is a minimal requirement a nonparametric prior must

comply with in order to ensure some degree of flexibility in statistical analysis.
It should be also noted that the dependence structure displayed in assumption (9) is also the

starting point in [4] where the authors propose an example (the first we are aware of in the litera-
ture) of nonparametric prior for partially exchangeable arrays which coincides with a mixture of
products of Dirichlet processes. Furthermore, (9) defines the framework in which recent propos-
als of dependent nonparametric priors can be embedded.



1266 A. Lijoi, B. Nipoti and I. Prünster

3.1. Dependence between p̃1 and p̃2

An important preliminary result we state concerns the mixed moment of (p̃1(A), p̃2(B)) for any
A and B in X. To this end, define the following quantity

τq(u) :=
∫ ∞

0
sqe−usρ(s)ds (10)

for any q ≥ 1. Moreover, to simplify the notation in (4) we set ψ(u) = ψ(u1X) for any u > 0,
where 1A is the indicator function on set A. One can, then, prove the following proposition.

Proposition 1. Let (p̃1, p̃2) be a vector of GM-dependent normalized CRM defined in (8). For
any A and B in X one has

E
[
p̃1(A)p̃2(B)

] = P0(A)P0(B) + [
P0(A ∩ B) − P0(A)P0(B)

]
(11)

× c(1 − z)

∫
(0,∞)2

e−cz[ψ(u)+ψ(v)]−c(1−z)ψ(u+v)τ2(u + v)dudv.

Moreover, it follows that

Corr
(
p̃1(A), p̃2(B)

) = (1 − z)[P0(A ∩ B) − P0(A)P0(B)]√
P0(A)[1 − P0(A)]√P0(B)[1 − P0(B)] I(c, z), (12)

where

I(c, z) :=
∫ ∞

0

∫ ∞
0 e−cz[ψ(u)+ψ(v)]−c(1−z)ψ(u+v)τ2(u + v)dudv∫ ∞

0 ue−cψ(u)τ2(u)du
.

It can be easily seen that if A = B , then the correlation in (12) reduces to (1 − z)I(c, z) and
does not depend on the specific set where the two random probabilities p̃1 and p̃2 are evaluated.
This fact is typically used to motivate (1 − z)I(c, z) as a measure of the (overall) dependence
between p̃1 and p̃2. Coherently with our construction p̃1 and p̃2 are uncorrelated if z = 1, and the
same can be said if A and B are independent with respect to the baseline probability measure P0.
The previous expression is structurally neat and, as will be shown in the following illustrations,
in some important special cases the double integral I(c, z) can be made sufficiently explicit so
to allow a straightforward computation.

Example 1 (Continued). If μ̃1, μ̃2 are two dependent CRMs, one has τq(u) = 
(q)(1 + u)−q

and the correlation between the corresponding GM-dependent Dirichlet processes coincides
with (12) where

I(c, z) = c

c + 1
3F2(c − cz + 2,1,1; c + 2, c + 2;1), (13)

where 3F2 is the generalized hypergeometric function

3F2(α,β,ρ;γ,σ ;x) =
∑
j≥0

(α)j (β)j (ρ)j

j !(γ )j (σ )j
xj (14)

and (a)n = 
(a + n)/
(a + n) for any a > 0 and any non-negative integer n. The above series
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converges if |x| < 1 and it does for x = 1 provided that Re(γ + σ − α − β − ρ) > 0, with Re(z)
denoting the real part of a complex number z.

Example 2 (Continued). If μ̃1, μ̃2 are σ -stable dependent CRMs, one has τq(u) = σ(1 −
σ)q−1u

σ−q and the correlation between the corresponding dependent normalized σ -stable pro-
cesses is equal to (12) with

I(c, z) = 1

σ

∫ 1

0

w1/σ−1

[1 + z(1 − w1/σ )σ − z(1 − w)] dw.

Even if we are not able to evaluate the above integral analytically, a numerical approximation
can be easily determined.

3.2. Partition probability function

The procedure adopted for determining an expression for the mixed moments of p̃1 and p̃2 can be
extended to provide a form for the partially exchangeable partition probability function (pEPPF)
for the n1 + n2 random variables (r.v.’s) X(n1) and Y(n2). It is worth recalling that the concept of
EPPF plays an important role in modern probability theory (see [33] and references therein) and,
implicitly, in numerous MCMC algorithms one ends up “sampling from the partition” as well.
First, note that if z < 1

P[Xi = Yj ] = c

∫ ∞

0
ue−cψ(u)τ2(u)du > 0

for any i and j : hence, with positive probability any of the elements of the first sample X(n1)

can coincide with any element from Y(n2). This leads us to address the issue of determining
the probability that the two samples are partitioned into K = K1 + K2 + K0 clusters of distinct
values where

(a) K1 is the number of distinct values in the first sample X(n1) not coinciding with any of the
Yj ’s;

(b) K2 is the number of distinct values in the second sample Y(n2) not coinciding with any of
the Xj ’s;

(c) K0 is the number of distinct values that are shared by both samples X(n1) and Y(n2).

Moreover, we denote by N(i) = (N1,i , . . . ,NKi,i) the vector of frequencies for the Ki unshared
clusters and with Q(i) = (Q1,i , . . . ,QK0,i ) the vector of frequencies the sample X(n1), if i = 1,
or the sample Y(n2), if i = 2, contributes to each of the shared clusters. Correspondingly, we
introduce the sets of vectors of positive integers

�ni,ki ,k0 :=
{(

n(i),q(i)
)
:

ki∑
l=1

nl,i +
k0∑

r=1

qr,i = ni

}
,

where the more concise notation n(i) = (n1,i , . . . , nki ,i ) and q(i) = (q1,i , . . . , qk0,i ) is used,
for i = 1,2. The result we are going to state characterizes the probability distribution of
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the random partition induced by (X(n1),Y(n2)) as encoded by the vector of positive integers
(K1,K2,K0,N(1),N(2),Q(1),Q(2)). Such a distribution has masses at points (k1, k2, k0,n(1),

n(2),q(1),q(2)) that we denote as �
(n1+n2)
k (n(1),n(2),q(1),q(2)), where k = k1 + k2 + k0.

Proposition 2. Let (p̃1, p̃2) be a GM-dependent normalized CRM defined in (8). For any
(n(i),q(i)) ∈ �ni,ki ,k0 , with i = 1,2, and for any nonnegative integers k1, k2 and k0 such that
kl + k0 ∈ {1, . . . , nl}, for l = 1,2, one has

�
(n1+n2)
k

(
n(1),n(2),q(1),q(2)

)
= ck


(n1)
(n2)

∑
(∗)

(1 − z)k0+|i|+|l|zk1+k2−|i|−|l|

×
∫ ∞

0

∫ ∞

0
un1−1vn2−1e−cz[ψ(u)+ψ(v)]−c(1−z)ψ(u+v)

×
k1∏

j=1

τnj,1(u + ij v)

k2∏
j=1

τnj,2(lj u + v)

k0∏
r=1

τqr,1+qr,2(u + v)dudv,

where the sum runs over the set of all vectors of integers i = (i1, . . . , ik1) ∈ {0,1}k1 and l =
(l1, . . . , lk2) ∈ {0,1}k2 , whereas |i| = ∑k1

j=1 ij and |l| = ∑k2
j=1 lj .

The expression, though in closed form and of significant theoretical interest, is quite difficult
to evaluate due to the presence of the sum with respect to the integer vectors i and l. Nonetheless,
Proposition 2 is going to be a fundamental tool for the derivation of the MCMC algorithm we
adopt for density estimation and for inferring on the clustering structure of the two samples. We
will be able to skip the evaluation of the sum by resorting to suitable auxiliary variables whose
full conditionals can be determined and evaluated. To clarify this point, consider the first sample
X(n1), fix i ∈ {0,1}k1 and denote by n0

(i) the vector of cluster frequencies that correspond to labels

in i equal to 0 whereas n1
(i) is the vector of cluster frequencies corresponding to labels in i equal

to 1. In a similar fashion, for the second sample Y(n2), for l ∈ {0,1}k2 , set n0
(l) and n1

(l). Finally, let

n(i,l) = (n1
(i),n1

(l), q1,1 +q1,2, . . . , qk0,1 +qk0,2). From these definitions, it is obvious that n0
(i), n0

(l)
and n(i,l) are vectors with k1 − |i|, k2 − |l| and k0 + |i| + |l| coordinates, respectively. Moreover,
let λ1, λ2 and λ0 be permutations of the coordinates of the vectors n0

(i), n0
(l) and n(i,l). We shall

further denote

�
(n1+n2)
k,i,l

(
n0

(i),n0
(l),n(i,l)

)
as the pEPPF conditional on independent random variables i and l whose distribution is Bernoulli
with parameter (1 − z). Moreover, note that the pEPPF �

(n1+n2)
k depends on the vectors q(i), for

i = 1,2, through their componentwise sum q∗ = (q1,1 + q1,2, . . . , qk0,1 + qk0,2). Hence, we can
also write

�
(n1+n2)
k

(
n(1),n(2),q(1),q(2)

) = �
(n1+n2)
k

(
n(1),n(2),q∗)
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and shall denote as λ′
1, λ′

2 and λ′
0 permutations of the components in n(1), n(2) and q∗, re-

spectively. Similarly, λ1, λ2 and λ0 are permutations of the components in n0
(i), n0

(l) and n(i,l).
Therefore, as a straightforward consequence of Proposition 2 we obtain the following invariance
property for �

(n1+n2)
k and for �

(n1+n2)
k,i,l whose proof is omitted since it is immediate.

Proposition 3. Let (p̃1, p̃2) be a GM-dependent normalized CRM defined in (8). Then

�
(n1+n2)
k

(
n(1),n(2),q∗) = �

(n1+n2)
k

(
λ′

1n(1), λ′
2n(2), λ′

0q∗), (15)

�
(n1+n2)
k,i,l

(
n0

(i),n0
(l),n(i,l)

) = �
(n1+n2)
k,i,l

(
λ1n0

(i), λ2n0
(l), λ0n(i,l)

)
. (16)

The invariance property in (15) entails that exchangeability holds true within three separate
groups of clusters: those with nonshared values and the clusters shared by the two samples.
Such a finding is not a surprise since it reflects the partial exchangeability assumption. On the
other hand, (16) implies that, conditional on a realization of i and l whose components are i.i.d.
Bernoulli random variables with parameter 1 − z, a similar partially exchangeable structure is
revealed even if it now involves different groupings of the clusters that are still three: two groups
with nonshared values that are labeled either by ij or lj equal to 0, and the group containing
both observations shared by the two samples and nonshared values labeled by either ij or lj
equal to 1. Moreover, unlike (15) these three groups of clusters are governed by independent
random probability measures. The invariance structure displayed in (16) corresponds to a mixture
decomposition for p̃1 and p̃2 that is going to be displayed in the next section and is also relevant
in simplifying the MCMC sampling scheme we are going to devise. Note that (15) holds true
since the sum appearing in the representation of �

(n1+n2)
k is over all possible {0,1}-valued indices

ij and lj : hence a permutation of the frequency vectors within the three groups simply yields a
permutation of the summands in Proposition 2. On the contrary, fixing the indices ij and lj as

in (16) corresponds to dropping the sum in �
(n1+n2)
k and, then, the invariance is restricted to

those frequencies that correspond to the same index values.

Example 1 (Continued). Let (μ̃1, μ̃2) be a vector of GM-dependent gamma CRMs. If i =
(i1, . . . , ik1) ∈ {0,1}k1 and l = (l1, . . . , lk2) ∈ {0,1}k2 define n̄1 = ∑k1

j=1(1 − ij )nj,1, n̄2 =∑k2
j=1(1 − lj )nj,2, n̄1,0 = ∑k1

j=1 ij nj,1. Moreover, to further simplify notation, set

ξσ

(
n(1),n(2),q∗) =

k1∏
j=1

(1 − σ)nj,1−1

k2∏
i=1

(1 − σ)ni,2−1

m∏
r=1

(1 − σ)qr,1+qr,2−1,

α′ = c + cz + |q∗| and β ′ = c + n̄1,0 + |q∗|. It can then be shown that the pEPPF of the GM-
dependent Dirichlet process is then given by

�
(n1+n2)
k

(
n(1),n(2),q∗)

= ckξ0
(
n(1),n(2),q∗)

×
∑
(∗)

zk1+k2−|i|−|j|(1 − z)k0+|i|+|j|

(α′)n1(β
′)n2

3F2
(
cz + n̄2, β

′, n1;n1 + α′, n2 + β ′;1
)
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for any (n(i),q(i)) ∈ �ni,ki ,k0 , for i = 1,2, and for any k1 ≤ n1, k2 ≤ n2 and k0 such that k =
k1 + k2 + k0 ∈ {1, . . . , n1 + n2}. Note also that if there is only one sample, namely n1n2 = 0, the
previous pEPPF reduces to the EPPF of the Dirichlet process determined in [1,11].

Example 2 (Continued). When (μ̃1, μ̃2) is a vector of GM-dependent σ -stable CRMs, one ob-
tains a pEPPF of the form

�
(n1+n2)
k

(
n(1),n(2),q∗)

= 
(k)


(n1)
(n2)
σ k−1ξσ

(
n(1),n(2),q∗)

×
∑
(∗)

zk1+k2−|i|−|l|(1 − z)k0+|i|+|l|
∫ 1

0

wn1−n̄1+(k1−|i|)σ−1(1 − w)n2−n̄2+(k2−|l|)σ−1

[1 − z + zwσ + z(1 − w)σ ]k dw,

where n̄1, n̄2, n̄1,0 are defined as in Example 1. Note that the one-dimensional integral above has
the same structure as the one appearing in I(c, z) and can be evaluated numerically. Also in this
case, if n1n2 = 0 the above expression reduces to the EPPF of the normalized σ -stable process.
See, for example, [33].

Remark 1. Following a request of the referees, we also sketch the extension to more than a
pair of dependent random probability measures the most natural being μ̃i = μi + μ0, for each
i = 1, . . . ,N and N > 2. If the mutually independent CRMs μi are identical in distribution, for
i = 1, . . . ,N , and independent from the common source of randomness μ0, one immediately
obtains that the joint Laplace transform of the vector (μ̃1, . . . , μ̃N ) evaluated at a vector function
(f1, . . . , fN) is given by

E
[
e−∑N

i=1 μ̃i (fi )
] = e−c(1−z)ψ(|f|)−cz

∑N
i=1 ψ(fi),

where ψ is the Laplace exponent defined in (4) and shared by the μi ’s (i = 0,1, . . . ,N ) and
|f| = ∑N

i=1 fi . This expression can be used to mimic the proof of Proposition 2 and leads to a
straightforward generalization of the pEPPF in the N -dimensional case, which turns out to have
the following form

ck∏N
j=1 
(nj )

∑
(∗)

(1 − z)
k0+∑N

j=1 |ij |
z
∑N

j=1(kj −|ij |)

×
∫

(0,∞)N

N∏
j=1

u
nj −1
j e−c(1−z)ψ(|u|)−cz

∑N
i=1 ψ(ui)

N∏
j=1

kj∏
l=1

τil,j (uj )τnl,j −il,j

(|u|)

×
k0∏

l=1

τql

(|u|)du1, . . . , duN,
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where the (∗) is the set of all vectors ij = (i1,j , . . . , ikj ,j ) ∈×kj

l=1{0, nl,j }, for j = 1, . . . ,N ,

|u| = ∑N
i=1 ui and |ij | = ∑kj

l=1 il,j . Moreover, the definition of τq in (10) is extended to cover the
case with q = 0 as τ0(u) = 1 for any u > 0. The previous expression provides the probability of
observing an array of N samples, with respective sizes n1, . . . , nN , with observations partitioned
into kj clusters specific to the j th sample and k0 groups shared by two or more samples. The
exact evaluation of the above N -dimensional integral poses some additional challenges and its
implementation within a sampling scheme is more demanding. A notable exception is given by
the GM-dependent Dirichlet process where for computational purposes one can avoid the use of
the pEPPF and rely on a mixture representation of p̃i and p̃0 that will be detailed at the beginning
of the next section.

4. Dependent mixtures

We now apply the general results for GM-dependent normalized CRMs (p̃1, p̃2) to mixture
models with random dependent densities. In fact, we consider data that are generated from
random densities f̃1 and f̃2 defined by f̃i (x) = ∫

�
hi(x; θ)p̃i(dθ), for i = 1,2, with � being

a complete and separable metric space equipped with the corresponding Borel σ -algebra. If
θ (i) = (θ1,i , . . . , θni ,i ), for i = 1,2, stand for vectors of latent variables corresponding to the
two samples, the mixture model can be represented in hierarchical form as

Xi,1|
(
θ (1), θ (2)

) ind∼ h1(·; θi,1), i = 1, . . . , n1,

Yj,2|
(
θ (1), θ (2)

) ind∼ h2(·; θj,2), j = 1, . . . , n2,

(Xi,1, Yj,2)|
(
θ (1), θ (2)

) ind∼ h1(·; θi,1)h2(·; θj,2), (17)

θj,i |(p̃1, p̃2)
i.i.d.∼ p̃i , j = 1, . . . , ni; i = 1,2,

(p̃1, p̃2)
d= GM-dependent normalized CRM.

Henceforth, we will set h1 = h2 = h; the case of h1 �= h2 can be handled in a similar fashion,
with the obvious variants. The investigation of distributional properties of the model is eased by
rewriting p̃1 and p̃2 in the following mixture form

p̃i = wipi + (1 − wi)p0, i = 1,2, (18)

where wi = μi(X){μi(X) + μ0(X)}−1, the pi ’s and p0 are independent normalized CRMs with
Lévy intensities czP0(dx)ρ(s)ds and c(1−z)P0(dx)ρ(s)ds, respectively. Obviously w1 and w2
are dependent. In general, the weights wi and the pi ’s are dependent, the only exception being
the case in Example 1 where the pi ’s are independent Dirichlet processes. Details about this
special case will be provided later.

Remark 2. An interesting aspect of (18) is that each p̃i can be decomposed into two independent
sources of randomness: an idiosyncratic one, pi , and a common one, p0. This is close in spirit to
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the model of Müller, Quintana and Rosner [28], which is based on a vector of dependent random
probability measures (p̃1, . . . , p̃n) defined as

p̃i = ωpi + (1 − ω)p0, (19)

where pi and p0 are independent Dirichlet processes and the distribution of ω is a mixture with
point masses ω = 0 and ω = 1 and the remaining mass spread on (0,1) through a beta density.
Despite their similarity, there are however some crucial differences among GM-dependent nor-
malized CRMs and the model in (19) so that it is not possible to interpret one as the generalization
of the other, nor viceversa. The first thing to note is that (19) assumes common weights, ω and
1−ω, for each p̃i whereas in our proposal the weights of the mixtures wi in (18) do not coincide
for different i even if they have the same marginal distributions. More importantly, the random
probability measures defined in [28] via (19) are, in general, marginally not Dirichlet processes.
In our framework, preserving the marginal Dirichlet structure or, in general, a normalized CRM
structure is relevant: it guarantees the degree of analytical tractability we need for determining
distributional results and devising suitable sampling strategies. The latter can then be thought of
as alternative to the existing algorithms for dependent random probability measures such as, for
example, the one proposed in [28].

On the basis of the decomposition displayed in (18), one can introduce two collections of
auxiliary random variables, (ζj,1)j≥1 and (ζj,2)j≥1, defined on (�,F ,P) and taking values in
{0,1}∞ and {0,2}∞, and provide an useful alternative representation of the mixing measure
in (17) in terms of these auxiliary variables as

θi,1|ζi,1,μ1,μ2,μ0
ind∼ pζi,1, i = 1, . . . , n1,

θj,2|ζj,2,μ1,μ2,μ0
ind∼ pζj,2 , j = 1, . . . , n2, (20)

(ζi,1, ζj,2)|μ1,μ2,μ0
ind∼ bern

(
w1; {0,1}) × bern

(
w2; {0,2}),

where X ∼ bern(w; {a, b}) means that P[X = b] = 1 − P[X = a] = w for w ∈ [0,1] and
a, b ∈ R. The latent variables θ (i) are, then, governed by GM-dependent normalized CRMs.
Therefore, we can resort to results established in Section 3.2 to obtain the full conditional distri-
butions for all the quantities that need to be sampled in order to attain posterior inferences. Given
the structure of the model, the latent θ (i), i = 1,2, might feature ties which generate, according
to the notation we have already introduced, k1 + k2 + k0 clusters. Our analysis of the partition
of the θ (i)’s will further benefit from the following fact that is a straightforward consequence of
Proposition 2.

Corollary 1. Let (p̃1, p̃2) be a GM-dependent normalized CRM defined in (8). Suppose P0 in
(5) is a nonatomic probability measure on (X,X). Then

P[θi,1 = θj,2|ζi,1 �= ζj,2] = 0. (21)



Dependent normalized CRMs 1273

Hence, (21) entails that ties between the two groups θ (1) and θ (2) may arise with positive
probability only if any two θi,1 and θj,2 share the same label ζi,1 = ζj,2 = 0. This is a structural
property of the model and it intuitively means that there cannot be overlaps between the different
sources of randomness involved, which seems desirable.

Suppose θ
(i)∗ = (θ∗

1,i , . . . , θ
∗
ki ,i

), for i = 1,2, and θ∗ = (θ∗
1 , . . . , θ∗

k0
) denote the vectors of

unique distinct values associated to the K = K1 + K2 + K0 clusters. The corresponding par-
tition is

π̃n1,n2 =
2⋃

i=1

{Cj,i : j = 1, . . . ,Ki} ∪ {Cj,i,0: j = 1, . . . ,K0}, (22)

where r, s ∈ Cj,i means that θr,i = θs,i = θ∗
j,i , whereas r1 ∈ Cj,1,0 and r2 ∈ Cj,2,0 implies that

θr1,1 = θr2,2 = θ∗
j . It is clear, from the specification of the model (17), that the conditional density

of the data (X(n1),Y(n2)), given the partition π̃n1.n2 = πn1,n2 and the distinct latent variables

θ∗ = (θ
(1)∗ , θ

(2)∗ , θ∗), coincides with

f
(
x,y|θ∗,πn1,n2

)
(23)

=
k1∏

j=1

∏
i∈Cj,1

h
(
xi; θ∗

j,1

) k2∏
�=1

∏
i∈C�,2

h
(
yi; θ∗

�,2

) k0∏
r=1

∏
i∈Cr,1,0

h
(
xi; θ∗

r

) ∏
�∈Cr,2,0

h
(
y�; θ∗

r

)
.

Finally, set

L∗(dx,dy,dπ,dθ,dζ ) (24)

as the distribution of the data (X(n1),Y(n2)), the partition π̃n1,n2 in (22), the vector of unique
values in θ = (θ (1), θ (2)) and the labels ζ = (ζ (1), ζ (2)). If n = n1 + n2, then L∗ is a probability
distribution on the product space X

n × Pn × �n × {0,1}n1 × {0,2}n2 , where Pn is the space of
all possible realizations of the random partition π̃n1,n2 in (22). The determination of L∗ will be
first given for any pair of GM-dependent normalized CRMs. The specific expressions valid for
dependent mixtures of the Dirichlet and the normalized σ -stable processes will be established as
straightforward corollaries. In the sequel, we also denote as g0 a density of P0 with respect to
some σ -finite dominating measure H on �, namely g0 = dP0/dH .

Proposition 4. Let (p̃1, p̃2) be a GM-dependent normalized CRM defined in (8). Moreover, let
ζ ∗

i = (ζ ∗
1,i , . . . , ζ

∗
ki ,i

) be the vectors of labels corresponding to the distinct latent variables θ
(i)∗ ,

with i = 1,2. For the dependent mixture model in (17), the distribution L∗ in (24) has density
given by

g
(
n(1),n(2),q(1),q(2), ζ ∗)f (

x,y|θ∗,πn1,n2

) k∏
i=1

g0
(
θ∗
i

)
, (25)
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where

g
(
n(1),n(2),q(1),q(2), ζ ∗)
= ckzk̃1+k̃2(1 − z)k1+k2−k̃1−k̃2


(n1)
(n2)

×
∫ ∞

0

∫ ∞

0
un1−1vn2−1e−cz[ψ(u)+ψ(v)]−c(1−z)ψ(u+v) (26)

×
k1∏

j=1

τnj,1

(
u + (

1 − ζ ∗
j,1

)
v
) k2∏

j=1

τnj,2

((
1 − ζ ∗

j,2/2
)
u + v

)

×
k0∏

r=1

τqr,1+qr,2(u + v)dudv,

where k̃1 = |ζ (1)∗ | and k̃2 = |ζ (2)∗ |/2 identify the number of clusters with label 1 and 2, respec-
tively.

Before examining the details of the models we will refer to for illustrative purposes, it should
be recalled that our approach yields posterior estimates of f̃1 and f̃2 and of the number of clusters
KX and KY into which one can group the two sample data. Another interesting issue concerns
the estimation of statistical functionals of f̃1 and of f̃2, which has been addressed in the ex-
changeable case by Gelfand and Kottas [13]. Their approach is based on a suitable truncation of
the stick-breaking representation of the Dirichlet process. In order to extend their techniques to
this setting, a representation of the posterior distribution of a pair of GM-dependent normalized
CRMs is still missing.

4.1. Dependent mixtures of Dirichlet processes

If the vector (p̃1, p̃2) is a GM-dependent Dirichlet process as in Example 1, then one finds out
that the weights (w1,w2) in (18) and the Dirichlet process components pi , for i = 0,1,2, are
independent and the density function of the vector (w1,w2) is

f (w1,w2) = 
(c + cz)


2(cz)
(c − cz)

(w1w2)
cz−1[(1 − w1)(1 − w2)]c−1

(1 − w1w2)c+cz
1[0,1]2(w1,w2). (27)

This corresponds to the bivariate beta distribution introduced [31]. This model is analyzed in [21,
35], where independence between (w1,w2) and (p0,p1,p2) is used to devise a sampler that
includes sampling the weights wi . Here we marginalize with respect to both the weights (w1,w2)

and the random independent Dirichlet processes pi , for i = 0,1,2. The first marginalization is
trickier and is achieved by virtue of the results in Section 3.2.
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Corollary 2. Let (p̃1, p̃2) be a GM-dependent Dirichlet process. A density of the probability
distribution L∗ defined in (24) coincides with

ckzk̃1+k̃2(1 − z)k1+k2−k̃1−k̃2

(α)n1(β)n2
3F2(α − cz + n1 − n̄1, n1, n2;α + n1, β + n2;1)

× ξ0
(
n(1),n(2),q∗)f (

x,y|θ∗,πn1,n2

) k∏
i=1

g0
(
θ∗
i

)
,

where n̄1 = |ζ (1)|, n̄2 = |ζ (2)|/2, α = c + n2 − n̄2 and β = c + n1 − n̄1.

As for the actual implementation of the model, a Gibbs sampler easily follows from Corol-
lary 2. A key issue is the sampling of the labels. This can be done by first observing the fol-
lowing facts: (i) if θi,1 = θj,2 then, by Corollary 1, the corresponding labels are zero, namely
ζi,1 = ζj,2 = 0; (ii) given the partition π , the dimensions of label vectors can be shrunk so that
one basically has k labels corresponding to the k = k1 + k2 + k0 clusters of the partition. Re-
mark (i) implies that we do not need to sample the labels associated to θi,1 values coinciding
with any of the θj,2’s and viceversa. Moreover, remark (ii) implies that for any r, s ∈ Cj,i one
has ζr,i = ζs,i and, thus, we need to sample only labels ζ ∗

j,i corresponding to distinct values θ∗
j,i .

Finally, there might be θj,1’s (or θj,2’s) associated to ζj,1 = 0 (or ζj,2 = 0) that do not coincide
with any of the θi,2’s (or of the θi,1’s): the corresponding labels are not degenerate and must be
sampled from their full conditionals. If ζ

(1)
−j,∗ stands for the vector ζ

(1)∗ with the j th component
removed, we use the short notation

πj,1(x) := P
[
ζ ∗
j,1 = x|ζ (1)

−j,∗, ζ
(2)∗ , θ∗,X(n1),Y(n2)

]
.

Hence, if θ∗
j,1 does not coincide with any of the distinct values of the latent variables for the

second sample, it can be easily deduced that

πj,1(x) ∝ 1{0,1}(x)
zx(1 − z)1−x

(α)n2(βx)n2
(28)

× 3F2(α − cz + n1 − n̄−j,1 − xnj,1, n1, n2;α + n1, βx + n2;1),

where n̄−j,1 := ∑
i �=j ni,1ζ

∗
i,1 with ni,1 denoting the size of the cluster identified by θ∗

i,1. More-
over, βx = c + n1 − n̄−j,1 − xnj,1. Obviously, the normalizing constant is determined by
πj,i(0) + πj,i(1) = 1. The full conditionals for the ζ ∗

j,2 can be determined analogously.
As for the full conditionals of the θj,i ’s, these reduce to the ones associated to the univariate

mixture of the Dirichlet process, since one is conditioning on the labels ζj,i as well. Hence, one
can sample θj,1 from

w0P
∗
j,1(dθ) +

∑
l∈J−j,ζj,1

wlδθ̃l,ζj,1
(dθ), (29)
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where θ̃l,ζj,1 are the distinct θ values in the urn labeled ζj,1 and J−j,ζj,1 is the set of indices of
distinct values from the urn labeled ζj,1 after excluding θj,1. Moreover,

w0 ∝ c(1 − z)1−ζj,1zζj,1

∫
�

h(xj ; θ)P0(dθ),

(30)
wl ∝ n

(−j)

l,1 h(xj ; θ̃l,ζj,1).

In the weights above, P ∗
j,1(dθ) = h(xj ; θ)P0(dθ)/

∫
�

h(xj ; θ)P0(dθ) and n
(−j)

l,1 is the size of the

cluster containing θ̃l,ζj,1 , after deleting θj,1. With obvious modifications, one also obtains the
full conditional for generating θj,2. This last point suggests that, conditional on the labels, one
needs to run three independent Blackwell–MacQueen Pólya urn schemes: two are related to the
idiosyncratic (and independent) components and one is related to the common component. Given
this, the only difficulty in implementing the algorithm is due to the generalized hypergeometric
function 3F2(a, b, c; e,f ;x). Indeed, when such a function is evaluated at x = 1, as in our case,
the convergence of the series defining it can be very slow, depending on the magnitude of e+f −
a − b − c > 0: the lower such a value, the slower the convergence of the series. The efficiency of
the algorithm can, thus, be improved by suitably resorting to identities that involve generalized
hypergeometric functions in order to obtain equivalent expressions with a larger value of e+f −
a −b− c. In particular, in the examples considered here we have been able to considerably speed
up the implementation of the algorithm by applying an identity that can be found in [2], page 14.

4.2. Dependent mixtures of normalized σ -stable processes

Consider a GM-dependent normalized σ -stable CRM vector (p̃1, p̃2) as in Example 2. The cor-
responding model is somehow more complicated to deal with, but at the same time it is more
representative of what happens in the general case since the simplifications typical of the Dirich-
let process do not occur. Specifically, the weights (w1,w2) are no longer independent from the
normalized σ -stable processes pi in (18). Moreover, the density of (w1,w2) is not available in
closed form for any σ ∈ (0,1), but only for σ = 1/2. Nonetheless, it is still possible to obtain
analytic forms for the full conditionals allowing to estimate the marginal densities f̃i and to ana-
lyze the clustering structure featured by the two-sample data. Indeed, one can show the following
corollary.

Corollary 3. Let (p̃1, p̃2) be a GM-dependent normalized σ -stable CRM. A density of the prob-
ability distribution L∗ defined in (24) coincides with

zk̃1+k̃2(1 − z)k1+k2−k̃1−k̃2


(n1)
(n2)
σ k−1
(k)f

(
x,y|θ∗,πn1,n2

) k∏
i=1

g0
(
θ∗
i

)

× ξσ

(
n(1),n(2),q∗)∫ 1

0

wn−n̄1+k̃1σ−1(1 − w)n2−n̄2+k̃2σ−1

{1 − z + zwσ + z(1 − w)σ }k dw,

where n̄1 = |ζ (1)| and n̄2 = |ζ (2)|/2.
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In a similar fashion to the dependent Dirichlet process case, from Corollary 3 one can deduce
the full conditionals for both the labels ζ

(i)∗ and the θ
(i)∗ . As for the former, if ζ ∗

j,1 corresponds to
a distinct value θ∗

j,i not coinciding with any value θl,2 from the second sample, then

πj,1(x) ∝ 1{0,1}(x)zx(1 − z)1−x

(31)

×
∫ 1

0

wn−n̄−j,1−xnj,1+(k̃−j,1+x)σ−1(1 − w)n2−n̄2+k̃2σ−1

{1 − z + zwσ + z(1 − w)σ }k dw,

where n̄−j,1 = ∑
i �=j ni,1ζ

∗
i,1 and k̃−j,1 = |ζ (1)

−j,∗|.
Interestingly, the full conditionals for the latent random variables are as simple as in the Dirich-

let process case. Since we are again conditioning on the labels ζ (1), it is apparent that one just
needs to run three independent Blackwell–MacQueen Pólya urn schemes. For θj,1 the full con-
ditional coincides with (29) with different weights

w0 ∝ k−j,ζj,1σ(1 − z)1−ζj,1zζj,1

∫
�

h(xj ; θ)P0(dθ),

(32)
wl ∝ (

n
(−j)

l,1 − σ
)
h(xj ; θ̃l,ζj,1),

where k−j,ζj,1 above is the number of clusters associated to pζj,1 after excluding θj,1.

5. Full conditional distributions

The results in Sections 3 and 4 form the basis for the concrete implementation of the model (17)
to a real datasets in the following section. Here we provide a detailed description of the algorithm
set forth in Section 4 for specific choices of the kernel h(·; ·) and of the random probability mea-
sures p̃1 and p̃2. In particular, we make the standard assumption of h(·;M,V ) being Gaussian
with mean M and variance V and consider GM-dependent Dirichlet and normalized σ -stable
processes as mixing measures. As for the specification of the base measures P0 of such mixing
measures (see (5)), we propose a natural extension to the partially exchangeable case of the quite
standard specification of Escobar and West [10], which greatly contributed to popularizing the
mixture of Dirichlet process model. In particular, we take P0 to be a normal/inverse-Gamma
distribution

P0(dM,dV ) = P0,1(dV )P0,2(dM|V )

with P0,1 being an inverse-Gamma probability distribution with parameters (s, S) and P0,2 is
Gaussian with mean m and variance τV . Moreover, the corresponding hyperpriors are of the
form

τ−1 ∼ Ga(w/2,W/2),

m ∼ N(a,A), (33)
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z ∼ U(0,1),

c ∼ Ga(a0, b0)

for some w > 0, W > 0, A > 0, a0 > 0, b0 > 0 and real a. In the following, we focus on the
two special cases and provide the analytic expressions for the corresponding full conditional
distributions. In terms of the notation set in Section 4, the latent variables now become θj,i =
(Mj,i ,Vj,i) ∈ R × R

+, for any j = 1, . . . , ni and i = 1,2. Moreover, θ̃j,i = (M̃j,i , Ṽj,i ), for
i = 0,1,2, represent the j th distinct value of the latent variables with label i. Also recall that the
number of distinct values with label i, for i = 1,2, is equal to k̃i and set k̃0 = k1 + k2 − k̃1 − k̃2.

5.1. GM-dependent Dirichlet processes

Let us first deal with the hierarchical mixture model (17) with (p̃1, p̃2) a vector of GM-dependent
Dirichlet processes with parameters (c, z;P0), which we will denote by GM–D(c, z;P0) in the
sequel. With this specification and the auxiliary variable representation of the mixing measure
laid out in (20), the weights of the predictive (29) are similar to those described in [10], the only
differences being related to the bivariate structure, which results in the dependence on z (see (5))
and on the label ζj,i . These identify the full conditional for the latent θj,i .

In order to determine the full conditionals for the other parameters to be sampled, let D−r

stand for the set of all (hyper)parameters of the model but r . As for the full conditional for z, one
has

κz

(
z|X(n1),Y(n2),D−z

) ∝ κz(z)z
k̃1+k̃2(1 − z)k̃0

× 3F2(α − cz + n1 − n̄1, n1, n2;α + n1, β + n2;1),

where κz is the prior distribution of z, which in our specification coincides with the uniform on
(0,1). On the other hand, an expression for the full conditional for c is obtained as follows

κc

(
c|X(n1),Y(n2),D−c

) ∝ κc(c)
ck

(α)n1(β)n2

× 3F2(α − cz + n1 − n̄1, n1, n2;α + n1, β + n2;1),

where κc is the prior distribution of c that is supposed coincide with Ga(a0, b0). Moreover, note
that both the coefficients α and β appearing in the generalized hypergeometric function 3F2

above depend on c. See Corollary 2. Finally, τ and m are sampled from the following distribu-
tions

τ |(X(n1),Y(n2),D−τ

) ∼ IG

(
w + k

2
,
W + W ′

2

)
, (34)

m|(X(n1),Y(n2),D−m

) ∼ N(RT ,T ), (35)
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where IG(a, b) denotes the inverse-gamma distribution with density function g(s) ∝
s−a−1e−β/s1R+(s), W ′ = ∑2

i=0
∑k̃i

l=1(M̃l,i − m)2/Ṽl,i and

T =
[

1

A
+ 1

τ

(
k̃1∑

i=1

1

Ṽi,1
+

k̃2∑
j=1

1

Ṽj,2
+

k̃0∑
r=1

1

Ṽr,0

)]−1

,

R =
[

a

A
+ 1

τ

(
k̃1∑

i=1

M̃i,1

Ṽi,1
+

k̃2∑
j=1

M̃j,2

Ṽj,2
+

k̃0∑
r=1

M̃r,0

Ṽr,0

)]−1

.

5.2. GM-dependent σ -stable normalized random measures

When (p̃1, p̃2) is a vector of GM-dependent normalized σ -stable processes with parameters
(z,P0) we set the short notation GM–st(σ, z,P0). The full conditionals are then derived from
Corollary 3. In particular, explicit expressions for the weights in (32) can be deduced and the full
conditional for z which coincides with

κz

(
z|X(n1),Y(n2),D−z

) ∝ κz(z)z
k̃1+k̃2(1 − z)k̃0

×
∫ 1

0

wn1−n̄1+k̃1σ−1(1 − w)n2−n̄2+k̃2σ−1

{1 − z + zwσ + z(1 − w)σ }k dw,

where κz is, as in Section 5.1, uniform on (0,1). Moreover, if a prior on (0,1) is assigned to the
parameter σ , the corresponding full conditional is given by

κσ

(
σ |X(n1),Y(n2),D−σ

) ∝ κσ (σ )σ k−1ξσ

(
n(1),n(2),q∗)

×
∫ 1

0

wn1−n̄1+k̃1σ−1(1 − w)n2−n̄2+k̃2σ−1

{1 − z + zwσ + z(1 − w)σ }k dw.

Finally, the full conditionals for τ and m coincide with those displayed in (34) and (35) since
they depend only on h and P0 and not on the specific vector of random probabilities (p̃1, p̃2)

driving the respective dependent mixtures.

5.3. Accelerated algorithm

It is well known that univariate Pólya urn samplers like the one proposed in [10] tend to mix
slowly when the probability of sampling a new value, w0, is much smaller than the probability
to sample an already observed one. When this occurs, the sampler can get stuck at the current
set of distinct values and it may take many iterations before any new value is generated. Such a
concern clearly extends also to our bivariate Pólya urn sampler and, in particular, to (29) and (32)
leading the algorithm to get stuck in some specific {θ̃i,l : l = 0,1,2; i = 1, . . . , k̃l}. To circumvent
this problem, we resort to the method suggested in [38] and [25]: it consists in resampling, at



1280 A. Lijoi, B. Nipoti and I. Prünster

the end of every iteration, the distinct values θ̃l,i from their conditional distribution. Since this
distribution depends on the choice of p̃1 and p̃2 only through their base measure P0, it is the
same for the Dirichlet and σ -stable cases. In particular, for every i = 1, . . . , k̃1, the required full
conditional density of θ̃i,1 is

L∗(θ̃i,1|X(n1),Y(n2),D−θ̃i,1

) ∝ g0(θ̃i,1)
∏

j∈Ci,1

h(xj , θ̃i,1), (36)

where L∗ is the joint law defined in (24). With our specification, the full conditional distribution
of θ̃i,1 in (36) becomes normal/inverse-Gamma with

Ṽ −1
i,1 ∼ Ga

(
s + ni,1

2
, S +

∑
x2
j

2
+ m2ni,1 − ∑

xj (2m + τ
∑

xj )

2(1 + τni,1)

)
,

M̃i,1|Ṽi,1 ∼ N

(
m + τ

∑
xj

1 + τni,1
, Ṽi,1

τ

1 + τni,1

)
,

where
∑

xj is a shortened notation for
∑

j∈Ci,1
xj . Analogous expressions, with obvious modi-

fications, hold true for θ̃i,2 and θ̃i,0.

6. Illustration

In this section, we illustrate the inferential performance of the proposed model on a two-sample
dataset and to this end we implement the Gibbs sampling algorithm devised in the previous sec-
tion for (17). We shall consider (p̃1, p̃2) being either a GM–D(c, z,P0) or a GM–st(σ, z,P0). In
terms of computational efficiency, we note in advance that the algorithm with the GM–st mixture
is remarkably faster than the one associated to the GM–D mixture. As already pointed out in the
previous sections, this is due to the need of repeated evaluations of generalized hypergeometric
function 3F2 in the GM–D case. In contrast, the numerical evaluation of the one-dimensional
integral in Corollary 3, for the GM–st mixture, is straightforward.

We shall analyze the well-known Iris dataset, which contains measures of 4 features of 3 dif-
ferent species of Iris flowers: Setosa, Versicolor and Virginica. For each of these species 150
records of sepal length, sepal width, petal length and petal width of flowers are available. These
data are commonly used in the literature as an illustrative example for discriminant analysis.
Indeed, it has been noted that Setosa is very well separated from the other two species, which
partially overlap. Of the 4 measured features, here we consider the petal width expressed in
millimeters. A total number of 50 observations per species have been recorded. The 150 obser-
vations are, then, used to form two samples X(n1) and Y(n2) as follows. We set n1 = 90 and let the
first sample consist of 50 observations of Setosa and 40 of Versicolor. Correspondingly n2 = 60
and includes 50 observations of Virginica and the remaining 10 observations of Versicolor. The
particular design of the experiment is motivated by the idea that the Versicolor species identifies
the shared component between the two mixtures, thus making our approach for modeling depen-
dence appropriate. Moreover, on the basis of previous considerations it is expected that the two
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Figure 1. GM–D(c, z,P0) (solid line) vs. GM–st(σ, z,P0) (dashed line) mixture with random c and σ ,
respectively: posterior estimates of the densities f1 and f2. The displayed histograms are generated by the
actual two-sample data.

species in the first dataset are more clearly separated than the two species forming the second
sample.

Our statistical analysis has the following two goals: on the one hand we wish to estimate the
densities generating the two samples and, on the other, we aim at obtaining an approximation of
the posterior distribution of the number of clusters in each sample. This allows to draw a direct
comparison of the inferential outcomes produced by the GM–D(c, z,P0) and GM–st(σ, z,P0)

mixtures. As for the specifications of the hyperparameters in (33) we essentially adopted the quite
standard specifications of [10]. Hence, we have set (w,W) = (1,100), (s, S) = (1,1), (a,A) =
((n1X̄ +n2Ȳ )/(n1 +n2),2) and (a0, b0) = (2,1) where X̄ and Ȳ are the sample means for X(n1)

and Y(n2), respectively. As for the other parameters involved, we suppose that c ∼ Ga(2,1),
whereas σ and z are both uniform on [0,1]. Moreover, these three parameters are independent.
All estimates will be based on 80,000 iterations of the algorithm after 20,000 burn-in sweeps.

The estimated densities are displayed in Figure 1 and there seem to be no significant differ-
ences. However, regardless the particular mixture model specification, the two species forming
each sample are clearly better separated in the first sample. This is not surprising, given that the
second sample is formed by two overlapping species. See also the histogram in the background
of Figure 1. The results on the clustering structure are reported in Figure 2 and in Table 1. Fig-
ure 2 shows that the posterior distributions of the number of clusters corresponding to the GM–st
mixture is characterized by a lower variability than in the GM–D mixture case. Moreover, if

Table 1. GM–D(c, z,P0) vs. GM–st(σ, z,P0) mixture with random c and σ , respectively: estimated num-
ber of clusters (Col. 1 and 2), maximum a posteriori values (K̂X and K̂Y) and probability of more than 4
clusters per sample (Col. 5 and 6)

E[KX| . . .] E[KY| . . .] K̂X K̂Y P(KX ≥ 4) P(KY ≥ 4)

GM–D(c, z,P0) 3.72 3.15 3 2 0.50 0.31
GM–st(σ, z,P0) 2.70 2.30 2 2 0.13 0.05
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Figure 2. GM–D(c, z,P0) (top row) vs. GM–st(σ, z,P0) (bottom row) mixture with random c and σ ,
respectively: posterior distributions of the number of clusters KX and KY.

one roughly thinks of each species of flowers in a sample as forming a single cluster, then it
is apparent that the GM–st mixture better estimates both KX and KY. See also Table 1. These
results seems to suggest that the parameter σ , associated to the stable CRM, has a beneficial
impact on the estimation of the clustering structure. This is in line with the findings of [23] in
the exchangeable case, where it is pointed out that σ induces a reinforcement mechanism which
improves the capability of learning the clustering structure from the data. We believe this aspect
is of great relevance and, hence, deserves further investigation.

Appendix

A.1. Proof of Proposition 1

By combining the definition of GM-dependent normalized CRMs given in (8) with the gamma
integral, it is possible to write

E
[
p̃1(A)p̃2(B)

] =
∫ ∞

0

∫ ∞

0
E

[
e−uμ̃1(X)−vμ̃2(X)μ̃1(A)μ̃2(B)

]
dudv.
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Since μ̃i = μi + μ0 for i = 1,2, with μ0, μ1 and μ2 independent, one has

E
[
e−uμ1(X)−(u+v)μ0(X)μ1(A)μ0(B)

]
= E

[
e−uμ1(X)μ1(A)

]
E

[
e−(u+v)μ0(X)μ0(B)

]
= c2z(1 − z)P0(A)P0(B)e−czψ(u)−c(1−z)ψ(u+v)τ1(u)τ1(u + v).

Use the symbol Ai to denote A if i = 1 and Ac if i = 0. Hence, {Ai ∩ Bj : i, j = 0,1} is the
partition of X generated by {A,B}. Hence,

E
[
e−(u+v)μ0(X)μ0(A)μ0(B)

] =
1∑

i,j=0

E
[
e−(u+v)μ0(X)μ0

(
A ∩ Bi

)
μ0

(
Aj ∩ B

)]
.

This implies that

E
[
e−(u+v)μ0(X)μ0(A)μ0(B)

]
= e−c(1−z)ψ(u+v)c(1 − z)

×
{

P0(A ∩ B)τ2(u + v) + c(1 − z)τ 2
1 (u + v)

1∑
i,j=0

P0
(
A ∩ Bi

)
P0

(
Aj ∩ B

)}

= e−c(1−z)ψ(u+v)c(1 − z)
{
P0(A ∩ B)τ2(u + v) + c(1 − z)P0(A)P0(B)τ 2

1 (u + v)
}
.

Summing up, it follows that

E
[
p̃1(A)p̃2(B)

]
=

∫ ∞

0

∫ ∞

0
e−z(ψ(u)+ψ(v))−c(1−z)ψ(u+v)

× c
{
(1 − z)P0(A ∩ B)τ2(u + v) + c2P0(A)P0(B)

× [
(1 − z)2τ 2

1 (u + v) + z(1 − z)τ1(u + v)
(
τ1(u) + τ1(v)

)
+ z2τ1(u)τ1(v)

]}
dudv.

If in the previous expression one sets A = B = X, then the following identity holds true

c2
∫ ∞

0

∫ ∞

0
e−cz(ψ(u)+ψ(v))−c(1−z)ψ(u+v))

× [
(1 − z)2τ 2

1 (u + v) + z(1 − z)τ1(u + v)
(
τ1(u) + τ1(v)

) + z2τ1(u)τ1(v)
]

dudv

= 1 − c(1 − z)

∫ ∞

0

∫ ∞

0
e−c(1−z)ψ(u+v)τ2(u + v)dudv.

The results in (11) and in (12) then follows.



1284 A. Lijoi, B. Nipoti and I. Prünster

A.2. Proof of Proposition 2

We first determine the probability distribution of (π̃n1,n2 ,X(n1),Y(n2)). Here π̃n1,n2 denotes a
random partition of {X(n1),Y(n2)} whose generic realization, πn1,n2 , splits the n1 + n2 observa-
tions into

∑2
i=0 ki groups of distinct values with respective frequencies {nj,1}k1

j=1, {n�,1}k2
�=1 and

{qr,1 + qr,2}k0
r=1. Henceforth, we shall use the shorter notation

�n,k(A) = (
π̃n1,n2 ,X(n1),Y(n2)

)−1
(πn1,n2, A)

with A standing for the collection of pairwise disjoint sets {Aj,1,A�,2,Ar : j = 1, . . . , k1;� =
1, . . . , k2; r = 1, . . . , k0}. Moreover, for any pair of set function m1 and m2 on (X,X ) we set

mn(i)

i (Ai ) = ∏ki

j=1 m
nj,i

i (Aj,i) and (mq(1)

1 × mq(2)

2 )(A0) = ∏k0
r=1 m

qr,1
1 (Ar)m

qr,2
2 (Ar). By virtue

of (9) one has

P
[
�n,k(A)

] =
∫

P 2
X

pn(1)

1 (A1)pn(2)

2 (A2)
(
pq(1)

1 × pq(2)

2

)
(A0)�(dp1,dp2). (37)

Since each p̃i is equal, in distribution, to the normalized measure μ̃i/μ̃i(X) one can proceed in
a similar fashion as in the proof of Proposition 1 and write

P
[
�n,k(A)

] = 1


(n1)
(n2)

∫ ∞

0
du

∫ ∞

0
dv

× E
[
e−uμ̃1(X)−vμ̃2(X)μ̃n(1)

1 (A1)μ̃
n(2)

2 (A2)
(
μ̃

q(1)

1 × μ̃
q(2)

2

)
(A0)

]
.

Since CRMs give rise to mutually independent random variables when evaluated on disjoint sets,
which identifies the so-called independence property of CRMs, the expected value in the integral
above is shown to coincide with

E
[
e−uμ̃1(X

∗)−vμ̃2(X
∗)] 2∏

i=1

ki∏
j=1

E
[
e−uμ̃1(Aj,i )−vμ̃2(Aj,i )μ̃

nj,i

i (Aj,i)
]

×
k0∏

r=1

E
[
e−uμ̃1(Ar )−vμ̃2(Ar )μ̃

qr,1
1 (Ar)μ̃

qr,2
2 (Ar)

]
,

where X
∗ = X \ {(⋃2

i=1
⋃ki

j=1 Aj,i) ∪ (
⋃k0

r=1 Ar)}. In the first product, let us consider i = 1.
A similar line of reasoning holds for i = 2 as well. If we set hz(u, v) = z(ψ(u) + ψ(v)) + (1 −
z)ψ(u + v), by virtue of the Faà di Bruno formula the j th factor coincides with

E
[
e−uμ̃1(Aj,1)−vμ̃2(Aj,1)μ̃

nj,1
1 (Aj,1)

]
= (−1)nj,1

∂nj,1

∂unj,1
e−G(Aj,1)hz(u,v)

= e−G(Aj,1)hz(u,v)
{
G(Aj,1)

(
zτnj,1(u) + (1 − z)τnj,1(v)

) + Rj(Aj,1)
}
,
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where Rj (Aj,1) is a polynomial in G(Aj,1) of order greater than 1 and G = cP0. Moreover, a
multivariate version of the Faà di Bruno formula, see [5], leads to

E
[
e−uμ̃1(Ar )−vμ̃2(Ar )μ̃

qr,1
1 (Ar)μ̃

qr,2
2 (Ar)

]
= (−1)qr,1+qr,2

∂qr,1+qr,2

∂uqr,1∂vqr,2
e−G(Ar)hz(u,v)

= e−G(Ar)hz(u,v)
{
G(Ar)(1 − z)τqr,1+qr,2(u + v) + R∗

r (Ar)
}

with R∗
r (Ar) denoting a polynomial in G(Ar) of degree greater than 1. Combining all these facts

together, one obtains

P
[
�n,k(A)

]
=

∏
j,�,r G(Aj,1)G(A�,2)G(Ar)


(n1)
(n2)

×
∑

i∈{0,1}k1

∑
l∈{0,1}k2

(1 − z)k0+|i|+|l|zk1+k2−|i|−|l|

×
∫ ∞

0

∫ ∞

0

k1∏
j=1

τnj,1(u + ij v)

k2∏
l=1

τnl,2(�lu + v)

k0∏
r=1

τqr,1+qr,2(u + v)d dv + R∗∗
r (A),

where R∗∗
r (A) is a polynomial of order greater than k = k1 + k2 + k0 in the variables G(Aj,1),

with j = 1, . . . , k1, G(A�,2), with � = 1, . . . , k2, and G(Ar), with r = 1, . . . , k0. It is apparent
that the probability distribution of (X(n1),Y(n2)), conditional on π̃n1,n2 = πn1,n2 , is absolutely
continuous with respect to P k

0 and recall that P0 is nonatomic. In order to determine a density of
(X(n1),Y(n2)), conditional on π̃n1,n2 = πn1,n2 , define Aε as the collection of sets {Aε

j,1,A
ε
�,2,A

ε
r :

j = 1, . . . , k1;� = 1, . . . , k2; r = 1, . . . , k0} with

Aε
j,1 ↓ {xj }, Aε

�,2 ↓ {y�}, Aε
r ↓ {zr}

as ε ↓ 0. Hence, a version of the conditional density of (X(n1),Y(n2)), conditional on π̃n1,n2 =
πn1,n2 , with respect to P k

0 and evaluated at (x,y, z) is proportional to

lim
ε↓0

P[�n,k(Aε)]∏k1
j=1 P0(A

ε
j,1)

∏k2
�=1 P0(A

ε
�,2)

∏k0
r=1 P0(Aε

r )

and, from previous expansion, it can be easily seen to coincide with 1. And this proves the
statement.
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A.3. Proof of Proposition 4

The probability distribution L∗ defined in (24) can be decomposed as follows

L
(
θ∗,πn1,n2 , ζ

)
L

(
X(n1),Y(n2)|θ∗,πn1,n2 , ζ

)
.

In a similar fashion to the proof of Proposition 2, we use the notation

�n,k(A) = (
π̃n1,n2 , θ

∗)−1
(πn1,n2 , A)

with A standing for the collection of pairwise disjoint sets {Aj,1,A�,2,Ar : j = 1, . . . , k1;� =
1, . . . , k2; r = 1, . . . , k0}. By virtue of (9) and by definition of ζ = (ζ (1), ζ (2)), one has

P
[
�n,k(A)|ζ ] =

∫
P 3

X

p
n(1)·ζ ∗

1
1 (A1)p

n(2)·ζ ∗
2

2 (A1)

(38)
× p

n(1)·(1−ζ ∗
1)

0 (A1)p
n(2)·(1−ζ ∗

2)

0 (A2)p
q∗
0 (A0)�

′(dp0,dp1,dp2),

where �′ corresponds to the probability distribution of the random vector(
μ0

μ0(X)
,

μ1

μ1(X)
,

μ2

μ2(X)

)

on P 3
X

and we have used vector notation to denote the inner products n(i) · ζ ∗
i = ∑ki

j=1 nj,iζ
∗
j,i

and n(i) · (1 − ζ ∗
i ) = ∑ki

j=1 nj,i(1 − ζj,i) for i = 1,2. Moreover, note that

P
[
ζ = (

a(1),a(2)
)|μ0,μ1,μ2

] = μ1(X)|a(1)|μ2(X)|a(2)|/2μ0(X)n1+n2−|a(1)|−|a(2)|/2

(μ0(X) + μ1(X))n1(μ0(X) + μ2(X))n2

for any a = (a(1),a(2)) ∈ {0,1}n1 ×{0,2}n2 . Thus, by similar arguments to those employed in the
proofs of Propositions 1 and 2, we can write

P
[
�n,k(A), ζ = a

] = 1


(n1)
(n2)

∫ ∞

0
du

∫ ∞

0
dvun1−1vn2−1

×E
[
e−u(μ0(X)+μ1(X))−v(μ0(X)+μ2(X))μ

n(1)·ζ ∗
1

1 (A1)μ
n(1)·(1−ζ ∗

1)

0 (A1)

× μ
n(2)·ζ ∗

2
2 (A2)μ

n(2)·(1−ζ ∗
2)

0 (A2)
(
μ

q∗
0

)
(A0)

]
,

where a is a vector such that a(i) contains ki labels ζ ∗
j,i such that

P
[
θ∗
j,i ∈ A|p0,p1,p2

] = pζ ∗
j,i

(A).
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Using the independence property of CRMs and the independence of μ0, μ1 and μ2, the expected
value in the integral above can be rewritten as

E
[
e−u(μ0(X

∗)+μ1(X
∗))−v(μ0(X

∗)+μ2(X
∗))]

×
2∏

i=1

ki∏
j=1

E
[
e−u(μ0(Aj,i )+μ1(Aj,i ))−v(μ0(Aj,i )+μ2(Aj,i ))μi(Aj,i)

nj,i ζ
∗
j,i μ0(Aj,i)

nj,i (1−ζ ∗
j,i )

]

×
k0∏

r=0

E
[
e−u(μ0(Ar )+μ1(Ar ))−v(μ0(Ar )+μ2(Ar ))μ0(Ar)

qr,1+qr,2
]
,

where X
∗ = X \ {(⋃2

i=1
⋃ki

j=1 Aj,i) ∪ (
⋃k0

r=1 Ar)}. In the first product consider i = 1, a similar
line of reasoning holds then for i = 2. The j th factor coincides with

E
[
e−vμ2(Aj,1)

]
E

[
e−uμ1(Aj,1)μ1(Aj,1)

nj,1ζ
∗
j,1

]
(39)

× E
[
e−(u+v)μ0(Aj,1)μ0(Aj,1)

nj,1(1−ζ ∗
j,1)

]
,

where

E
[
e−vμ2(Aj,1)

] = e−cP0(Aj,1)ψ(v)

and, by virtue of the Faà di Bruno formula,

E
[
e−uμ1(Aj,1)μ1(Aj,1)

nj,1ζ
∗
j,1

] = (−1)
nj,1ζ

∗
j,1

∂
nj,1ζ

∗
j,1

∂u
nj,1ζ

∗
j,1

e−czP0(Aj,1)ψ(u)

= e−czP0(Aj,1)ψ(u)
{
cz

[
P0(Aj,1)τnj,1(u) + Rj,1(Aj,1)

]}ζ ∗
j,1

and

E
[
e−(u+v)μ0(Aj,1)μ0(Aj,1)

nj,1(1−ζ ∗
j,1)

]
= (−1)

nj,1(1−ζ ∗
j,1)

∂
nj,1(1−ζ ∗

j,1)

∂s
nj,1(1−ζ ∗

j,1)
e−c(1−z)P0(Aj,1)ψ(s)

∣∣∣
s=u+v

= e−c(1−z)P0(Aj,1)ψ(u+v)
{
c(1 − z)

[
P0(Aj,1)τnj,1(u + v) + Rj,1(Aj,1)

]}1−ζ ∗
j,1 .

In the previous expressions, we have agreed that ∂0/∂s0 is the identity operator and that
Rj,1(Aj,1) is some polynomial in P0(Aj,1) of order greater than 1. Thus, the product in (39)
is equal to

e−cP0(Aj,1)hz(u,v)cz
ζ ∗
j,1(1 − z)

1−ζ ∗
j,1

{
P0(Aj,1)τnj,1

(
u + (

1 − ζ ∗
j,1

)
v
) + Rj,1(Aj,1)

}
. (40)

Analogously, one has

E
[
e−u(μ0(X

∗)+μ1(X
∗))−v(μ0(X

∗)+μ2(X
∗))] = e−cP0(X

∗)hz(u,v) (41)



1288 A. Lijoi, B. Nipoti and I. Prünster

and

E
[
e−u(μ0(Ar )+μ1(Ar ))−v(μ0(Ar )+μ2(Ar ))μ0(Ar)

qr,1+qr,2
]

(42)
= e−cP0(Ar )hz(u,v)c(1 − z)

{
P0(Ar)τqr,1+qr,2(u + v) + Rr(Ar)

}
,

where Rr(Ar) is some polynomial in P0(Ar) of order greater than 1. By combining the expres-
sions (40)–(42), we obtain that P[�n,k(A), ζ = a] coincides with

ckz|ζ ∗
1|+|ζ ∗

2|(1 − z)k1+k2−|ζ ∗
1|−|ζ ∗

2|


(n1)
(n2)
P k

0 (A)

×
∫ ∞

0

∫ ∞

0
un1−1vn2−1e−chz(u,v)

k1∏
j=1

τnj,1

(
u + (

1 − ζ ∗
j,1

)
v
)

×
k2∏

j=1

τnj,2

((
1 − ζ ∗

j,2

)
u + v

) k0∏
r=1

τqr,1+qr,2(u + v)dudv + R∗(A),

where R∗(A) is a polynomial in the variables P0(Aj,1), with j = 1, . . . , k1, P0(A�,2), with
� = 1, . . . , k2, and P0(Ar), with r = 1, . . . , k0, of order greater than k = k1 + k2 + k0 and
P k

0 (A) = ∏k1
i=1

∏k2
j=1

∏k0
r=1 P0(Ai,1)P0(Aj,2)P0(Ar). It is apparent that the probability distribu-

tion of (θ (1), θ (2)), conditional on π̃n1,n2 = πn1,n2 , is degenerate on �k and the probability dis-

tribution of the distinct values θ∗ = (θ
(1)∗ , θ

(2)∗ , θ∗) is absolutely continuous with respect to P k
0 .

In order to determine a density of (θ∗, ζ ∗, π̃n1,n2), introduce Aε as in the proof of Proposition 2
with

Aε
j,1 ↓ {

θ∗
j,1

}
, Aε

�,2 ↓ {
θ∗
�,2

}
, Aε

r ↓ {
θ∗
r

}
as ε ↓ 0 and observe that

lim
ε↓0

P[�n,k(Aε)]
P k

0 (Aε)
= g

(
n(1),n(2),q(1),q(2), ζ ∗)

and that

L
(
θ∗,πn1,n2 , ζ

) = g
(
n(1),n(2),q(1),q(2), ζ ∗) k∏

i=1

g0
(
θ∗
i

)
. (43)

Since the vector (X(n1),Y(n2)), given the partition π̃n1.n2 = πn1,n2 and the distinct values

(θ
(1)∗ , θ

(2)∗ , θ∗), is independent from the labels ζ , the result follows from (23).

A.4. Proof of Corollary 2

If (μ̃1, μ̃2) are GM-dependent gamma CRMs, then one has τq = 
(q)(1 + u)−q and ψ(u) =
log(1 + u). By plugging these expressions into (26) and resorting to identity 3.197.1 in [14], we
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obtain that g(n(1),n(2),q(1),q(2), ζ ∗) is equal to

ckzk̃1+k̃2(1 − z)k̃0

(c + n1 − n̄1)


(n1)
(c + n1 + n2 − n̄1)
ξ
(
n(1),n(2),q∗)

(44)

×
∫ ∞

0
un1−1(1 + u)−c−n1+n̄2

2F1(n̄2 + cz,n2;n1 + n2 − n̄1 + c;−u)du,

where we recall that k̃0 = k1 + k2 − k̃1 − k̃2. The simple change of variable t = u/(1 + u) and
the transformation formula for hypergeometric functions

2F1(α,β;γ ; z) = (1 − z)−α
2F1

(
α,γ − β;γ ; z/(z − 1)

)
let us rewrite the integral in (44) as∫ 1

0
tn1−1(1 − t)c+cz−1

2F1(n̄2 + cz, c + n1 − n̄1; c + n1 + n2 − n̄1; t)dt.

The proof is then completed by resorting to identity 7.512.5 in [14].

A.5. Proof of Corollary 3

If (μ̃1, μ̃2) are GM-dependent σ -stable CRMs, then one has τq = σ(1−σ)q−1u
σ−q and ψ(u) =

uσ . By plugging these expressions into (26) we obtain that g(n(1),n(2),q(1),q(2), ζ ∗) is equal to

ckzk̃1+k̃2(1 − z)k̃0σk


(n1)
(n2)
ξσ

(
n(n1),n(n2),q∗)

×
∫ ∞

0

∫ ∞

0

un1−n̄1+k̃1σ−1vn2−n̄2+k̃2σ−1(u + v)k̃0σ−n1−n2+n̄1+n̄2

exp{c[z(uσ + vσ ) + (1 − z)(u + v)σ ]} dudv.

The proof is completed by carefully applying the change of variables w = u/(u + v) and s =
u + v.
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