27 research outputs found
Antibody-based antiangiogenic and antilymphangiogenic therapies to prevent tumor growth and progression
Blood and lymphatic vessel formation is an indispensable factor for cancer progression and metastasis. Therefore, various strategies designed to block angiogenesis and lymphangiogenesis are being investigated in the hope to arrest and reverse tumor development. Monoclonal antibodies, owing to their unequalled diversity and specificity, might be applied to selectively inhibit the pathways that cancer cells utilize to build up a network of blood vessels and lymphatics. Among the possible targets of antibody-based therapies are proangiogenic and prolymphangiogenic growth factors from the VEGF family and the receptors to which they bind (VEGFRs). Here, we present molecular mechanisms of angiogenesis and lymphangiogenesis exploited by tumors to progress and metastasise, with examples of antibody-based therapeutic agents directed at interfering with these processes. The expanding knowledge of vascular biology helps to explain some of the problems encountered in such therapies, that arise due to the redundancy in signaling networks controlling the formation of blood and lymphatic vessels, and lead to tumor drug resistance. Nonetheless, combined treatments and treatments focused on newly discovered proangiogenic and prolymphangiogenic factors give hope that more prominent therapeutic effects might be achieved in the future
NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells
Tianshu Li, Matthias Zehner, Jieyan He, Tomasz Próchnicki, Gabor Horvath, Eicke Latz, Sven Burgdorf, Shinji Takeoka. NLRP3 inflammasome-activating arginine-based liposomes promote antigen presentations in dendritic cells. International Journal of Nanomedicine. 2019; 2019(14):3503—3516. doi:10.2147/IJN.S20237
ADAM17 promotes motility, invasion, and sprouting of lymphatic endothelial cells
Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy
SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation
PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment
Abstract
A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer’s disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau181, total tau, and Aβ1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aβ1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade and genes differentially expressed in disease-associated microglia. Our data show that p.P522R in PLCG2 reduces AD disease progression by mitigating tau pathology in the presence of amyloid pathology and, as a consequence, maintains cognitive function. Targeting the enzyme PLCG2 might provide a new therapeutic approach for treating AD
Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation [version 1; referees: 2 approved]
Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K+ efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation
Membrane fusogenic lysine type lipid assemblies possess enhanced NLRP3 inflammasome activation potency
Lysine (K) type cationic lipid with a propyl spacer and ditetradecyl hydrophobic moieties composing liposomes, K3C14, previously studied for gene delivery, were reported to activate the NLRP3 inflammasomes in human macrophages via the conventional phagolysosomal pathway. In this study, K3C16, a propyl spacer bearing lysine type lipids with dihexadecyl moieties (an extension of two hydrocarbon tail length) were compared with K3C14 as liposomes. Such a small change in tail length did not alter the physical properties such as size distribution, zeta potential and polydispersity index (PDI). The NLRP3 activation potency of K3C16 was shown to be 1.5-fold higher. Yet, the toxicity was minimal, whereas K3C14 has shown to cause significant cell death after 24 h incubation. Even in the presence of endocytosis inhibitors, cytochalasin D or dynasore, K3C16 continued to activate the NLRP3 inflammasomes and to induce IL-1β release. To our surprise, K3C16 liposomes were confirmed to fuse with the plasma membrane of human macrophages and CHO-K1 cells. It is demonstrated that the change in hydrophobic tail length by two hydrocarbons drastically changed a cellular entry route and potency in activating the NLRP3 inflammasomes. Keywords: Membrane fusion, Endocytosis, Lysine, Cationic liposome, NLRP3 inflammasome, IL-1
Quality of Life of Cancer Patients Treated with Chemotherapy
Background: Life-quality tests are the basis for assessing the condition of oncological patients. They allow for obtaining valuable information from the patients regarding not only the symptoms of disease and adverse effects of the treatment but also assessment of the psychological, social and spiritual aspects. Taking into account assessment of the quality of life made by the patient in the course of disease has a positive effect on the well-being of patients, their families and their caregivers as well as on satisfaction with the interdisciplinary and holistic oncological care. Methods: A population-based, multi-area cross-sectional study was conducted among patients with cancer in the study in order to assess their life quality. The method used in the study was a clinical interview. Quality of life was measured using the EQ-5D-5L Quality of Life Questionnaire, the Karnofsky Performance Status, our own symptom checklist, Edmonton Symptom Assessment and Visual Analogue Scale. Results: In the subjective assessment of fitness, after using the Karnofsky fitness index, it was shown that 28% (95% CI (confidence interval): 27–30) of patients declared the ability to perform normal physical activity. In the assessment the profile, quality of life and psychometric properties of EQ-5D-5L, it was shown that patients had the most severe problems in terms of self-care (81%, 95% CI: 76–89) and feeling anxious and depressed (63%, 95% CI: 60–68). Conclusions: Cancer undoubtedly has a negative impact on the quality of life of patients, which is related to the disease process itself, the treatment used and the duration of the disease