8 research outputs found

    Apolipoprotein A-I induced amyloidosis

    Get PDF
    AbstractAmyloidosis is characterized by extracellular deposits of protein fibrils with a high content of β-sheets in secondary structure. The protein forms together with proteoglycans amyloid fibrils causing organ damage and serious morbidity. Intact apolipoprotein A-I (apoA-I) is an important protein in lipid metabolism regulating the synthesis and catabolism of high density lipoproteins (HDL). Usually, apoA-I is not associated with amyloidosis. However, four naturally occuring mutant forms of apoA-I are known so far resulting in amyloidosis. The most important feature of all variants is the very similar formation of N-terminal fragments which were found in the amyloid deposits (residues 1–83 to 1–94). The new insights in the understanding of the association of apoA-I with HDL, its metabolism, and its hypothesized structural findings may explain a common mechanism for the genesis of apoA-I induced amyloidosis. Here we summarized the specific features of all known amyloidogenic variants of apoA-I and speculate about its metabolic pathway, which may have general implications for the metabolism of apoA-I

    Insights into post-translational processing of beta-galactosidase in an animal model resembling late infantile human G-gangliosidosis

    Get PDF
    G(M1)-gangliosidosis is a lysosomal storage disorder caused by a deficiency of ss-galactosidase activity. Human GM1-gangliosidosis has been classified into three forms according to the age of clinical onset and specific biochemical parameters. In the present study, a canine model for type II late infantile human GM1-gangliosidosis was investigated 'in vitro' in detail. For a better understanding of the molecular pathogenesis underlying G(M1)-gangliosidosis the study focused on the analysis of the molecular events and subsequent intracellular protein trafficking of beta-galactosidase. In the canine model the genetic defect results in exclusion or inclusion of exon 15 in the mRNA transcripts and to translation of two mutant precursor proteins. Intracellular localization, processing and enzymatic activity of these mutant proteins were investigated. The obtained results suggested that the beta-galactosidase C-terminus encoded by exons 15 and 16 is necessary for correct C-terminal proteolytic processing and enzyme activity but does not affect the correct routing to the lysosomes. Both mutant protein precursors are enzymatically inactive, but are transported to the lysosomes clearly indicating that the amino acid sequences encoded by exons 15 and 16 are necessary for correct folding and association with protective protein/cathepsin A, whereas the routing to the lysosomes is not influenced. Thus, the investigated canine model is an appropriate animal model for the human late infantile form and represents a versatile system to test gene therapeutic approaches for human and canine G(M1)-gangliosidosis
    corecore