17 research outputs found

    Genomic instantiation of consciousness in neurons through a biophoton field theory

    Get PDF
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain — referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain

    The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces

    No full text
    Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access)-a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest

    What a feeling : the underpinnings of physical feelings as molecular level holonomic effects

    No full text
    This paper proposes biophysical principles for why geometric holonomic effects through the geometric vector potential are sentient when harmonized by quantized magnetic vector potential in phase-space. These biophysical principles are based on molecular level electromagnetic resonances in partially holistic molecules where nonintegrated information acts as the consciousness process’s conduit—using the informational structure of physical feelings as a transition into subjectivity. The transformation of internal energies from potential to kinetic as ‘concealed’ motion may measure the causal capacity required to bridge causality for conscious experience. Conformational transitions produce bond-breaking, resulting in boundary conditions and limiting the molecular wavefunction to a partially holistic molecular environment with molecular holonomic effects. The van der Waals energy increases protein conformational activity (re-arrangement of bonds), causing energy transfer and information in protein-protein interactions across the cerebral cortex through the energy transduction process. Energy transitions predetermine molecular level electromagnetic resonances in aromatic residues of amino acids. The energy sharing between various nested molecular level electromagnetic resonances interacting with the intermolecular adhesion of London forces at the nexus between phospholipids and the lipophilic proteins has a key role in constraining the release of energy resulting in a vast array of information-based action through negentropic entanglement. Such information structure, passing from the objectivity of holonomic effects stemming from molecular level electromagnetic resonances, has an inherent ambiguity since meaning cannot be related to context, which constitutes preconscious experienceability. The transition from potentiality to actuality where Coulombic force is expressed as a smear of possible experiences where carriers of evanescent meanings instantly actualize through intermittent dispersion interactions as conscious experiences and return to potentiality in preconscious experienceabilities.

    A hybrid method for classifying cognitive states from fMRI data

    No full text
    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees

    The act of understanding uncertainty is consciousness

    No full text
    We define precognitive affect, composed of information holding dispositional states, as noncontextual, rudimentary building blocks of subjective intentionality. We take on a psychodynamic approach to intentional agency. Intentions unfold into actions in animate thermodynamics reducing subjective uncertainty by negentropic action. They are intentions in action carrying meaning in species having complex protein interactions with various regulated gene sets. In particular, the unfolding of intentionality in terms of biological purpose introduced by subjective functioning allows for a satisfactory account of subjective intentionality. The underlying experience of acting paves the way for understanding meaning of precognitive affect from subjective functioning. Therefore, the brain’s subjective intentionality as the underlying experience of acting is embedded in a negentropic “consciousness code” of “hidden” thermodynamic energy. It is the negentropically-derived quantum potential energy in the unified functioning of brain consciousness at the macroscopic scale. While at the mesoscopic scale, Schrödinger processes create boundary conditions for negentropic action to inform the intentional agency

    The activity of information in biomolecular systems : a fundamental explanation of holonomic brain theory

    No full text
    We wish to suggest a mechanism for binding intrinsic information based on an inter-cerebral superfast, spontaneous information pathway involving protein-protein interactions. Protons are convenient quantum objects for transferring bit units in a complex water medium like the brain. The phonon-polariton interaction in such a medium adds informational complexity involving complex protein interactions that are essential for the superfluid-like highway to enable the consciousness process to penetrate brain regions due to different regulated gene sets as opposed to single region-specific genes. Protein pathways in the cerebral cortices are connected in a single network of thousands of proteins. To understand the role of inter-cerebral communication, we postulate protonic currents in interfacial water crystal lattices result from phonon-polariton vibrations, which can lead in the presence of an electromagnetic field, to ultra-rapid communication where thermo-qubits, physical feelings, and protons that are convenient quantum objects for transferring bit units in a complex water medium. The relative equality between the frequencies of thermal oscillations due to the energy of the quasi-protonic movement about a closed loop and the frequencies of electromagnetic oscillations confirms the existence of quasi-polaritons. Phonon-polaritons are electromagnetic waves coupled to lattice vibrational modes. Still, when generated specifically by protons, they are referred to as phonon-coupled quasi-particles, i.e., providing a coupling with vibrational motions. We start from quasiparticles and move up the scale to biomolecular communication in subcellular, cellular and neuronal structures, leading to the negentropic entanglement of multiscale ‘bits’ of information. Espousing quantum potential chemistry, the interdependence of intrinsic information on the negative gain in the steady-state represents the mesoscopic aggregate of the microscopic random quantum-thermal fluctuations expressed through a negentropically derived, temperature-dependent, dissipative quantum potential energy. The latter depends on the time derivative of the spread function and temperature, which fundamentally explains the holonomic brain theory.

    A microring conjugate mirror design and simulation for naked-eye 3D imaging application

    No full text
    We present a design of micro-conjugate mirror using a nonlinear microring resonator, which is made of GaAsInP/P, is rapidly achieving widespread option in several three-dimensional (3D) imaging applications. By exploiting the conjugate mirror properties, the 3D light probes can be formed by the whispering gallery modes (WGM) in which the WGM probe is also available within a nonlinear microring resonator. It is important to understand, these light probes use the similar functional principle to provide structured light through the object, just as the reference beams to light up and develop a hologram using the holographic method. The interference of 2 beams constructs the 3D image which can be seen by the naked-eye while providing the 3D perception. The simulation results obtained from the transmission of 3D imaging are processed using MATLAB and OptiFDTD are compared and analyzed. These convincing theoretical results suggest that the proposed method can be used in practice to realize the naked-eye 3D imaging with convincing visual perception and efficient transmission while providing the ultimate mode of convenience for viewers

    Identification and characterization of a novel Mt-retrotransposon highly represented in the female mouse germline

    No full text
    The control of primordial follicle recruitment into the growing follicle population is a major limiting process in female reproduction. In order to gain insight into the molecular processes occurring at the time of primordial follicle activation, a subtractive hybridization analysis was performed between cDNAs prepared from temporally distinct mouse neonatal ovarian tissues that differed according to the state of primordial follicle activation. One highly represented clone associated with activation was an Mt retrotransposon-like sequence designated Mtfull, which was subsequently cloned and determined to be novel and restricted in expression to the ovary. The polyadenylated 1684-bp sequence has long terminal repeats, is predicted to be noncoding, and is the predominant Mti-related sequence present in the mouse ovary. In situ hybridization further localized Mtfull expression to the oocyte and confirmed that expression is concomitant with follicle activation. Together with in silico data, we predict Mtfull plays an essential role in folliculogenesis through regulation of gene expression
    corecore