28 research outputs found
AIBA: An AI Model for Behavior Arbitration in Autonomous Driving
Driving in dynamically changing traffic is a highly challenging task for
autonomous vehicles, especially in crowded urban roadways. The Artificial
Intelligence (AI) system of a driverless car must be able to arbitrate between
different driving strategies in order to properly plan the car's path, based on
an understandable traffic scene model. In this paper, an AI behavior
arbitration algorithm for Autonomous Driving (AD) is proposed. The method,
coined AIBA (AI Behavior Arbitration), has been developed in two stages: (i)
human driving scene description and understanding and (ii) formal modelling.
The description of the scene is achieved by mimicking a human cognition model,
while the modelling part is based on a formal representation which approximates
the human driver understanding process. The advantage of the formal
representation is that the functional safety of the system can be analytically
inferred. The performance of the algorithm has been evaluated in Virtual Test
Drive (VTD), a comprehensive traffic simulator, and in GridSim, a vehicle
kinematics engine for prototypes.Comment: 12 page
Mid-infrared interferometry with K band fringe-tracking I. The VLTI MIDI+FSU experiment
Context: A turbulent atmosphere causes atmospheric piston variations leading
to rapid changes in the optical path difference of an interferometer, which
causes correlated flux losses. This leads to decreased sensitivity and accuracy
in the correlated flux measurement. Aims: To stabilize the N band
interferometric signal in MIDI (MID-infrared Interferometric instrument), we
use an external fringe tracker working in K band, the so-called FSU-A (fringe
sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond
Astrometry) facility at VLTI. We present measurements obtained using the newly
commissioned and publicly offered MIDI+FSU-A mode. A first characterization of
the fringe-tracking performance and resulting gains in the N band are
presented. In addition, we demonstrate the possibility of using the FSU-A to
measure visibilities in the K band. Methods: We analyzed FSU-A fringe track
data of 43 individual observations covering different baselines and object K
band magnitudes with respect to the fringe-tracking performance. The N band
group delay and phase delay values could be predicted by computing the relative
change in the differential water vapor column density from FSU-A data.
Visibility measurements in the K band were carried out using a scanning mode of
the FSU-A. Results: Using the FSU-A K band group delay and phase delay
measurements, we were able to predict the corresponding N band values with high
accuracy with residuals of less than 1 micrometer. This allows the coherent
integration of the MIDI fringes of faint or resolved N band targets,
respectively. With that method we could decrease the detection limit of
correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy
(vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band
visibilities could be measured with a precision down to ~2%.Comment: 11 pages, 13 figures, Accepted for publication in A&
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
The Return of the Mid-infrared to the VLT: News from the VISIR Upgrade
The VLT mid-infrared imager and spectrometer VISIR returns to science operations following an extended upgrade period. Among the most important modifications are: the imaging and spectroscopic detectors have been replaced with larger AQUARIUS (1024 by 1024 pixel) detector arrays; the N-band low-resolution grating has been exchanged; and support is now provided for precipitable water vapour monitoring, in order to select the best observing conditions. The AQUARIUS detectors stem from a development for very low background applications which result in excess noise under ground-based conditions. A series of interventions was needed to find a scheme that effectively exploits these detectors for ground-based use, involving the implementation of faster chopping. VISIR has been returned to service at the VLT with enhanced capabilities
MATISSE, the VLTI mid-infrared imaging spectro-interferometer
GalaxiesStars and planetary systemsInstrumentatio
Mid-infrared circumstellar emission of the long-period Cepheid l Carinae resolved with VLTI/MATISSE
Stars and planetary system
Research on the ACC Autonomous Car
The aim of this paper is to present a general view about the autonomous driving researches made in the University of Applied Science Heilbronn, Germany. More exactly we will present aspects about our autonomous car design and construction. We will point out the original elements of our achievements: the driving robot construction and the control system structure design. This will be also the occasion to focus on the tactical level of the mentioned control system in order to present results on the trajectory tracking strategies