16 research outputs found

    Conjugate two-dimensional electric potential maps

    Full text link
    Two dimensional electric potential maps based on voltage detection in conducting paper are common practice in many physics courses in college. Most frequently, students work on `capacitor-like' geometries with current flowing between two opposite electrodes. A `topographical' investigation across the embedding medium (map of equipotential curves) allows to reassure a number of physical properties. This paper focuses on some less common configurations that bear pedagogical interest. We analyze `open-geometries' with electrodes in the form of long strips with slits. They provide a natural groundwork to bring the student to complex variable methods. Aided by this, we show that shaping the conducting paper board one may analyze finite size effects, as well as some meaningful discontinuities in the measured potential. The concept of conjugate electric potentials is exploited. Equipotentials and electric field lines acquire interchangeable roles and may be obtained in complementary `dual' experiments. A feasible theoretical analysis based on introductory complex variables and standardized numerics gives a remarkable quantification of the experimental results.Comment: 15 pages, 8 figure

    Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain

    Get PDF
    Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic char- acter in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude pop- ulations that first appeared 1.6–1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Ne- andertals. SH shares many postcranial anatomical features with Ne- andertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH popula- tion. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium oc- curred in a mosaic mode, both at a general and at a detailed level

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Altres ajuts: European Regional Development Fund "ERDF A way of making Europe"; Allergopharma-EAACI award 2021; SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020; Sandler Family Foundation; American Asthma Foundation; RWJF Amos Medical Faculty Development Program; National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845); National Institute of Health and Environmental Health Sciences (R01ES015794, R21ES24844); National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, R56MD013312); National Institute of General Medical Sciences (NIGMS) (RL5GM118984); Tobacco-Related Disease Research Program (24RT-0025, 27IR-0030); National Human Genome Research Institute (NHGRI) (U01HG009080); GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences; Slovenian Research Agency (P3-0067); SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (C3330-16-500106); NHS Research Scotland; Wellcome Trust Biomedical Resource (099177/Z/12/Z); Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII (AC15/00015); UK Medical Research Council and Wellcome (102215/2/13/2); University of Bristol; Swedish Heart-Lung Foundation, Swedish Research Council; Region Stockholm (ALF project and database maintenance); NHS Chair of Pharmacogenetics via the UK Department of Health; Innovative Medicines Initiative (IMI) (115010); European Federation of Pharmaceutical Industries and Associations (EFPIA); Spanish National Cancer Research Centre; Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17); Erasmus Medical Center; Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF); U.S. National Institutes of Health (HL07966); European Social Fund "ESF Investing in your future"; Ministerio de Ciencia, Innovación y Universidades; Universidad de La Laguna (ULL); European Academy of Allergy and Clinical Immunology (EAACI); European Respiratory Society (ERS) (LTRF202101-00861); Ministry of Education, Science and Sport of the Republic of Slovenia (C3330-19-252012); Singapore Ministry of Education Academic Research Fund; Singapore Immunology Network (SIgN); National Medical Research Council (NMRC Singapore); Biomedical Research Council (BMRC Singapore); Agency for Science Technology and Research (A*STAR Singapore, N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, H17/01/a0/008); Sime Darby Technology Centre; First Resources Ltd; Genting Plantation; Olam International; U.S. National Institutes of Health (HL138098).Background: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (OR) = 0.82, p = 9.05 × 10 and replication: OR = 0.89, p = 5.35 × 10) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: OR = 0.85, p = 3.10 × 10 and replication: OR = 0.89, p = 1.30 × 10). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Neandertal roots: Cranial and chronological evidence from Sima de los Huesos

    No full text
    The Sima de los Huesos site in Atapuerca, northern Spain, is a rich source of fossil hominin specimens. The site has now yielded further skull specimens that illuminate patterns of human evolution in Europe nearly half a million years ago. Arsuaga et al. studied 17 crania, including 7 that are new specimens and 6 that are more complete than before (see the Perspective by Hublin). This assemblage of specimens reveals the cranial, facial, and dental features of the Atapuerca hominins, which allows more precise evolutionary positioning of these Neandertal ancestors

    Multi-ancestry genome-wide association study of asthma exacerbations.

    No full text
    BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele  = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele  = 0.85, p = 3.10 × 10-5 and replication: ORC allele  = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense

    Multi-ancestry genome-wide association study of asthma exacerbations

    No full text
    BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele  = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele  = 0.85, p = 3.10 × 10-5 and replication: ORC allele  = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense
    corecore