22 research outputs found

    Microbial dysbiosis and microbiota–gut–retina axis: The lesson from brain neurodegenerative diseases to primary open-angle glaucoma pathogenesis of autoimmunity

    Get PDF
    In recent years, microbiota-associated neurodegenerative diseases have been exploited and provided new insight into disease pathogenesis. However, primary open-angle glaucoma (POAG), known as a complex neurodegenerative disease resulting from retinal ganglion cell death and optic nerve damage, can cause irreversible blindness and visual field loss. POAG, which shares several similarities with Parkinson’s disease (PD) and Alzheimer’s disease (AD), has limited studies and slow progression in the understanding of pathogenesis when compared to PD and AD. In this review, we summarized the current knowledge of POAG and commensal microbiota, combined with several lines of evidence in PD and AD to propose a possible hypothesis for POAG pathogenesis: microorganisms cause glaucoma via gut–retina axis, resulting in autoantibodies and autoreactive T cells that lead to autoimmunity. Furthermore, dual-hit hypothesis, an example of a commensal pathogen that causes PD, was partially exported in POAG. Finally, future perspectives are suggested to expand understanding of POAG

    Quinine Treatment Selects the pfnhe-1 ms4760-1 Polymorphism in Malian Patients with Falciparum Malaria

    Get PDF
    Background. The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. Methods. We conducted prospective quinine efficacy studies in 2 villages, Kolle and Faladie, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. Results. Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. Conclusions. This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.Howard Hughes Medical Institute [55005502]; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; European and Developing Countries Clinical Trials Partnership [EDCTP IP_07_31060_002]info:eu-repo/semantics/publishedVersio

    Polymorphisms of the <it>pfmdr1 </it>but not the <it>pfnhe-1 </it>gene is associated with <it>in vitro </it>quinine sensitivity in Thai isolates of <it>Plasmodium falciparum</it>

    No full text
    Abstract Background The emergence of Plasmodium falciparum resistance to most currently used anti-malarial drugs is a major problem in malaria control along the Thai-Myanmar and Thai-Cambodia borders. Quinine (QN) with tetracycline/doxycycline has been used as the second-line treatment for uncomplicated falciparum malaria. In addition, QN monotherapy has been the first-line treatment for falciparum malaria in pregnant women. However, reduced in vitro and in vivo responses to QN have been reported. To date, a few genetic markers for QN resistance have been proposed including Plasmodium falciparum chloroquine resistance transporter (pfcrt), P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum Na+/H+ exchanger (pfnhe-1). This study was to investigate the role of the pfmdr1 and pfnhe-1 gene on in vitro QN sensitivity in Thai isolates of P. falciparum. Methods Eighty-five Thai isolates of P. falciparum from the Thai-Myanmar and Thai-Cambodia borders from 2003-2008 were determined for in vitro QN sensitivity using radioisotopic assay. Polymorphisms of the pfmdr1 and pfnhe-1 gene were determined by PCR-RFLP and sequence analysis. Associations between the in vitro QN sensitivity and the polymorphisms of the pfmdr1 and pfnhe-1 gene were evaluated. Results The mean QN IC50 was 202.8 nM (range 25.7-654.4 nM). Only four isolates were QN resistant when the IC50 of >500 nM was used as the cut-off point. Significant associations were found between the pfmdr1 mutations at codons N86Y and N1042D and in vitro QN sensitivity. However, no associations with the number of DNNND, DDNNNDNHNDD, and NHNDNHNNDDD repeats in the microsatellite ms4760 of the pfnhe-1 gene were identified. Conclusion Data from the present study put doubt regarding the pfnhe-1 gene as to whether it could be used as the suitable marker for QN resistance in Thailand. In contrast, it confirms the influence of the pfmdr1 gene on in vitro QN sensitivity.</p

    Development of viable TAP-tagged dengue virus for investigation of host–virus interactions in viral replication

    Get PDF
    International audienceDengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions

    Inhibition of protein kinase C promotes dengue virus replication

    Get PDF
    International audienceBACKGROUND:Dengue virus (DENV) is a member of the Flaviviridae family, transmitted to human via mosquito. DENV infection is common in tropical areas and occasionally causes life-threatening symptoms. DENV contains a relatively short positive-stranded RNA genome, which encodes ten viral proteins. Thus, the viral life cycle is necessarily rely on or regulated by host factors.METHODS:In silico analyses in conjunction with in vitro kinase assay were used to study kinases that potentially phosphorylate DENV NS5. Potential kinase was inhibited or activated by a specific inhibitor (or siRNA), or an activator. Results of the inhibition and activation on viral entry/replication and host cell survival were examined.RESULTS:Our in silico analyses indicated that the non-structural protein 5 (NS5), especially the RNA-dependent RNA polymerase (RdRp) domain, contains conserved phosphorylation sites for protein kinase C (PKC). Phosphorylation of NS5 RdRp was further verified by PKC in vitro kinase assay. Inhibitions of PKC by a PKC-specific chemical inhibitor or siRNA suppressed NS5 phosphorylation in vivo, increased viral replication and reduced viability of the DENV-infected cells. In contrary, activation of PKC effectively suppressed intracellular viral number.CONCLUSIONS:These results indicated that PKC may act as a restricting mechanism that modulates the DENV replication and represses the viral outburst in the host cells
    corecore