425 research outputs found

    The Impact of Satellite Sea Surface Salinity for Prediction of the Coupled Indo-Pacific System

    Get PDF
    Here we assess the impact of satellite sea surface salinity (SSS) observations on seasonal to interannual variability of tropical Indo-Pacific Ocean dynamics as well as on dynamical ENSO forecasts. The baseline experiment assimilates satellite sea level (SL), sea surface temperature (SST), and in situ subsurface temperature and salinity observations (Tz, Sz). These baseline experiments are then compared with experiments that additionally assimilate Aquarius (version 5.0 Lilly and Lagerloef, 2008) and SMAP (version 2.0 Meissner and Wentz, 2016) SSS. Twelve-month forecasts are initialized for each month from September 2011 to September 2017. We find that including satellite SSS significantly improves NINO3.4 sea surface temperature anomaly validation over 0-8 month forecast lead-times and removing the salty bias from SMAP data helps to extend useful forecasts out to 12 month lead-times

    Facing challenges in differential classical conditioning research: benefits of a hybrid design for simultaneous electrodermal and electroencephalographic recording

    Full text link
    Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG–EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS−) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS− during 368–600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS−. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS− identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS− differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre–post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral psychophysiological measures

    The Impact of Satellite Sea Surface Salinity for Prediction of the Coupled Indo-Pacific System

    Get PDF
    We assess the impact of satellite sea surface salinity (SSS) observations on seasonal to interannual variability of tropical Indo-Pacific Ocean dynamics as well as on dynamical ENSO forecasts. Our coupled model is composed of a primitive equation ocean model for the tropical Indo-Pacific region that is coupled with the global SPEEDY atmospheric model (Molteni, 2003). The Ensemble Reduced Order Kalman Filter is used to assimilate observations to constrain dynamics and thermodynamics for initialization of the coupled model. The baseline experiment assimilates satellite sea level, SST, and in situ subsurface temperature and salinity observations. This baseline is then compared with experiments that additionally assimilate Aquarius (version 4.0) and SMAP (version 2.0) SSS. Twelve-month forecasts are initialized for each month from Sep. 2011 to Dec. 2016. We find that including satellite SSS significantly improves NINO 3.4 sea surface temperature anomaly validation after 1 out to 12 month forecast lead times. For initialization of the coupled forecast, the positive impact of SSS assimilation is brought about by surface freshening near the eastern edge of the western Pacific warm pool and density changes that lead to shallower mixed layer between 10 degrees South latitude-5 degrees North latitude. SST differences at initialization force wide-spread downwelling favorable curl over most of the tropical Pacific. Over an average forecast, SST remains warmer with SSS assimilation at the eastern edge of the warm pool. This warm SST propagates into the eastern Pacific and drags westerly wind anomalies eastward into the NINO 3.4 region. In addition, salting near the ITCZ (Intertropical Convergence Zone) leads to a deepening of the mixed layer and thermocline near 8 degrees North latitude. These patterns together lead to a funneling effect that provides the background state to amplify equatorial Kelvin waves. We show that the downwelling Kelvin waves are amplified by assimilating satellite SSS and lead to significantly improved forecasts particularly for the 2015 El Nino

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    microRNA-184 induces a commitment switch to epidermal differentiation

    Get PDF
    miR-184 is a highly evolutionary conserved microRNA (miRNA) from fly to human. The importance of miR-184 was underscored by the discovery that point mutations in miR-184 gene led to corneal/lens blinding disease. However, miR-184-related function in vivo remained unclear. Here, we report that the miR-184 knockout mouse model displayed increased p63 expression in line with epidermal hyperplasia, while forced expression of miR-184 by stem/progenitor cells enhanced the Notch pathway and induced epidermal hypoplasia. In line, miR-184 reduced clonogenicity and accelerated differentiation of human epidermal cells. We showed that by directly repressing cytokeratin 15 (K15) and FIH1, miR-184 induces Notch activation and epidermal differentiation. The disease-causing miR-184C57U mutant failed to repress K15 and FIH1 and to induce Notch activation, suggesting a loss-of-function mechanism. Altogether, we propose that, by targeting K15 and FIH1, miR-184 regulates the transition from proliferation to early differentiation, while mis-expression or mutation in miR-184 results in impaired homeostasis

    The Impact of Satellite Sea Surface Salinity for Prediction of the Coupled Indo-Pacific System

    Get PDF
    We assess the impact of satellite sea surface salinity (SSS) observations on seasonal to interannual variability of tropical Indo-Pacific Ocean dynamics as well as on dynamical ENSO forecasts. Our coupled model is composed of a primitive equation ocean model for the tropical Indo-Pacific region that is coupled with the global SPEEDY atmospheric model (Molteni, 2003). The Ensemble Reduced Order Kalman Filter is used to assimilate observations to constrain dynamics and thermodynamics for initialization of the coupled model. The baseline experiment assimilates satellite sea level, SST, and in situ subsurface temperature and salinity observations. This baseline is then compared with experiments that additionally assimilate Aquarius (version 4.0) and SMAP (version 2.0) SSS. Twelve-month forecasts are initialized for each month from Sep. 2011 to Dec. 2016. We find that including satellite SSS significantly improves NINO3.4 sea surface temperature anomaly validation after 1 out to 12 month forecast lead times. For initialization of the coupled forecast, the positive impact of SSS assimilation is brought about by surface freshening near the eastern edge of the western Pacific warm pool and density changes that lead to shallower mixed layer between 10S-5N. SST differences at initialization force wide-spread downwelling favorable curl over most of the tropical Pacific. Over an average forecast, SST remains warmer with SSS assimilation at the eastern edge of the warm pool. This warm SST propagates into the eastern Pacific and drags westerly wind anomalies eastward into the NINO3.4 region. In addition, salting near the ITCZ leads to a deepening of the mixed layer and thermocline near 8N. These patterns together lead to a funneling effect that provides the background state to amplify equatorial Kelvin waves. We show that the downwelling Kelvin waves are amplified by assimilating satellite SSS and lead to significantly improved forecasts particularly for the 2015 El Nino
    • …
    corecore