The Impact of Satellite Sea Surface Salinity for Prediction of the Coupled Indo-Pacific System

Eric Hackert¹

R. Kovach^{1,2}, J. Ballabrera-Poy³, A.J. Busalacchi⁴ and G. Vernieres⁵

¹ GMAO NASA Goddard,² SSAI, Greenbelt MD, ³ ICM-CSIC/Barcelona, Spain, ⁴ UCAR Boulder Co., ⁵ JCSDA/UCAR/NOAA College Park, MD

Funding by NASA Ocean Salinity Science Team

Ocean Sciences 2018, Feb 12, 2018

gmao.gsfc.nasa.gov

Outline

Hypothesis – Impact of Satellite Sea Surface Salinity improves coupled ENSO forecasts

- Models and Data Assimilation
- Results
 - 1. Impact of salinity for the Indo-Pacific on IC
 - 2. Impact of salinity on coupled forecast
 - 3. Impact of AQ/SMAP bias on coupled forecasts
- Summary

Ocean Model and Forcing

- Reduced-gravity, primitive equation, sigma coordinate model [Gent and Cane, 1989]
- Hybrid variable depth mixed layer [*Chen et al., 1994*]
- Advective AML coupled to OGCM [Seager et al., 1995]
- Realistic coastlines for tropical Indo-Pacific (33°E-76°W, 30°N-30°S), 1°x1/3° stretched, 20 layers, includes river contribution [Dai and Trenberth, 2002]
- Forcing: MERRA2 reanalysis winds, rainfall, cloud fraction and solar radiation [Gelaro et al., J.CLIM, 2017]

Ensemble Reduced Order Kalman Filter

- Assimilate SL, SST, SSS, T_z, S_z
- Basis MEOF of 1985-2004 model experiment and includes SL, H_{sfc}, H_{bot}, T, S, U, V
- Assimilation data
 - SSS (Aquarius V5.0 Level 3 of Lilly and Lagerloef, 2008)
 - SSS (SMAP V2 Level 3 of Meissner and Wentz, 2016)
 - SL (Multi-satellite product of Aviso, 2013)
 - SST (Reynolds et al., 2002)
 - T_z, S_z (GTSPP NODC 2006)

Coupled Model Atmosphere

- Use anomaly coupling technique (similar to e.g. *Kroeger and Kucharski, 2011 Clim.Dyn.*)
- SPEEDY for <u>Simplified Parameterizations</u>, primitiv<u>E</u>-<u>Equation Dynamics</u> - Version 4.1 (*Molteni 2003 Clim.Dyn., Kucharski et al., 2006 BAMS*)
 - ~3.8° resolution, 8 levels (925-30mb)
 - Winds improved using convective momentum transport of *Kim et al., 2008 Clim. Dyn.*
 - Within Indo-Pacific tropics SSTA, outside SSTA from HadISST (*Rayner et al., 2003*)

Impact of Sea Surface Salinity

Experiment Design

Experiment Name	Period	Assimilation Variables
ASSIM_SL_SST_T _z _S _z "Control"	Jan 1993 – Sep 2017	SL, SST, T_z and S_z
ASSIM_SL_SST_SSS_T _z _S _z Known as "SSS Assimilation"	Sep 2011 – Sep 2017*	SSS from Aquarius Version 5.0 combined with SMAP Version 2.0 Level 3 data and SL, SST, T_z , and S_z

*NOTE – spin up of SSS Assimilation experiment assimilates an OI of near-surface in situ observations from Jan 1993-Aug 2011

SSS

Salting near the ITCZ Freshening at the eastern edge of the WP

D₂₀ (for thermocline depth) Deepening the D₂₀ just off the equator Shoaling near the equator

Kelvin Amplitude

Kelvin Amplitude versus SSTA

Significant correlation between obs NINO3.4 SSTA and Kelvin amplitude (SSS assimilation – control) in NINO3.4 region shows that SSS assimilation enhances Kelvin wave

Coupled Model Validation

Correlation

RMS

SSS ASSIM = ASSIM_SL_SST_SSS(AQ+SMAP)_Tz_Sz
Control = ASSIM_SL_SST_Tz_Sz
(signif. improved at the 95% level using Steiger Z test)

Impact of Sea Surface Salinity

Experiment Design

Experiment Name	Period	Assimilation Variables
ASSIM_SL_SST	Sep 2011	Level 3 SSS data from Aquarius
SSS(AQ/SMAP_mod)_T _z _S _z	– Sep	/SMAP with (AQ–SMAP) added
"AQ/SMAP MODIFIED"	2017	and SL, SST, T _z , and S _z

Coupled Model Validation

Correlation

RMS

AQ/SMAP_mod = ASSIM_SL_SST_SSS(AQ/SMAPmod)_Tz_Sz SSS ASSIM = ASSIM_SL_SST_SSS(AQ+SMAP)_Tz_Sz

Summary

- Assimilation of Aquarius/SMAP SSS significantly improves coupled forecasts.
- SSS assimilation leads to density changes in the ML within the equatorial waveguide that act to enhance the Kelvin signal.
- Adding the AQ/SMAP bias to the SMAP data significantly improves long-lead forecasts.

Thanks!

For more information: See poster AI14A-1557 tonight from 4:00-6:00 PM

gmao.gsfc.nasa.gov