864 research outputs found

    Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy

    Get PDF
    This work was supported by the UK Engineering and Physical Sciences Research Council under grant EP/J01771X/1, A European Union FAMOS project (FP7 ICT, 317744), and the ā€™BRAINSā€™ 600th anniversary appeal, and Dr. E. Killick. We would also like to thank The RS Macdonald Charitable Trust for funding support. KD acknowledges support of a Royal Society Leverhulme Trust Senior Fellowship. This work was also supported by the PreDiCT-TB consortium [IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Unionā€™s Seventh Framework Programme (FP7/2007-2013) and EFPIA companiesā€™ in kind contribution (www.imi.europa.eu)]The ability to identify and characterise individual cells of the immune system under label-free conditions would be a significant advantage in biomedical and clinical studies where untouched and unmodified cells are required. We present a multi-modal system capable of simultaneously acquiring both single point Raman spectra and digital holographic images of single cells. We use this combined approach to identify and discriminate between immune cell populations CD4+ T cells, B cells and monocytes. We investigate several approaches to interpret the phase images including signal intensity histograms and texture analysis. Both modalities are independently able to discriminate between cell subsets and dual-modality may therefore be used a means for validation. We demonstrate here sensitivities achieved in the range of 86.8% to 100%, and specificities in the range of 85.4% to 100%. Additionally each modality provides information not available from the other providing both a molecular and a morphological signature of each cell.Publisher PDFPeer reviewe

    Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light

    Get PDF
    Electronā€“nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franckā€“Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-Ī²) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed

    Induction of HLA-B27 heavy chain homodimer formation after activation in dendritic cells

    Get PDF
    Introduction Ankylosing spondylitis (AS) is a severe, chronic inflammatory arthritis, with a strong association to the human major histocompatibilty complex (MHC) class I allele human leucocyte antigen (HLA) B27. Disulfide-linked HLA-B27 heavy-chain homodimers have been implicated as novel structures involved in the aetiology of AS. We have studied the formation of HLA-B27 heavy-chain homodimers in human dendritic cells, which are key antigen-presenting cells and regulators of mammalian immune responses. Method Both an in vitro dendritic-like cell line and monocyte-derived dendritic cells from peripheral blood were studied. The KG-1 dendritic-like cell line was transfected with HLA-B27 cDNA constructs, and the cellular distribution, intracellular assembly and ability of HLA-B27 to form heavy-chain homodimers was compared with human monocyte-derived dendritic cells after stimulation with bacterial lipopolysaccharide (LPS). Results Immature KG-1 cells expressing HLA-B27 display an intracellular source of MHC class I heavy-chain homodimers partially overlapping with the Golgi bodies, but not the endoplasmic reticulum, which is lost at cell maturation with phorbyl-12-myristate-13-acetate (PMA) and ionomycin. Significantly, the formation of HLA-B27 homodimers in transfected KG-1 cells is induced by maturation, with a transient induction also seen in LPS-stimulated human monocyte-derived dendritic cells expressing HLA-B27. The weak association of wildtype HLA-B*2705 with the transporter associated with antigen processing could also be enhanced by mutation of residues at position 114 and 116 in the peptide-binding groove to those present in the HLA-B*2706 allele. Conclusion We have demonstrated that HLA-B27 heavy-chain homodimer formation can be induced by dendritic cell activation, implying that these novel structures may not be displayed to the immune system at all times. Our data suggests that the behaviour of HLA-B27 on dendritic cells may be important in the study of inflammatory arthritis.</p

    Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

    Get PDF
    Acknowledgments Blood biochemistry analysis and serum analysis were performed by the Easter Bush Pathology Department, University of Edinburgh. Animal husbandry was performed by Centre for Integrative Physiology bio-research restructure technical staff, University of Edinburgh. Assistance with intravenous injections was provided by Ian Coldicott (University of Sheffield) and Hannah Shorrock (University of Edinburgh). Human blood cDNA was a gift to GH from Kathy Evans, University of Edinburgh. Imaging was performed at the IMPACT imaging facility, University of Edinburgh, with technical assistance from Anisha Kubasik-Thayil. The authors would also like to thank Lyndsay Murray for technical discussions relating to qRT-PCR analysis. This work was supported by funding from the SMA Trust and the Anatomical Society (via grants to THG); the Euan MacDonald Centre for Motor Neurone Disease Research (via grants to THG and SHP); the Wellcome Trust (via grants to EJNG and THG); Muscular Dystrophy UK (via grants to THG and CGB); a Elphinstone Scholarship from the University of Aberdeen (to SHP); and The French Muscular Dystrophy Association (via grants to CM and JC).Peer reviewedPublisher PD

    Not to Knot a Catheter. Case Report of the Knotting of a Suprapubic Catheter

    Get PDF
    A 20-month-old boy, who underwent left nephrectomy, had a suprapubic catheter inserted that knotted within the bladder. This case report identifies possible causes for such occurrences and how best to manage them

    Comparative attainment of 5-year undergraduate and 4-year graduate entry medical students moving into foundation training

    Get PDF
    Background Graduate entry medicine is a recent innovation in UK medical training. Evidence is sparse at present as to progress and attainment on these programmes. Shared clinical rotations, between an established 5-year and a new graduate entry course, provide the opportunity to compare achievement on clinical assessments. To compare completion and attainment on clinical phase assessments between students on a 4-year graduate entry course and an established 5-year undergraduate medicine course. Methods Overall completion rates for the 4 and 5 year courses, fails at first attempt, and scores on 14 clinical assessments, were compared between 171 graduate-entry and 450 undergraduate medical students at the University of Nottingham, comprising two graduating cohorts. Percentage assessment marks were converted to z-scores separately for each graduating year and the normalised marks then combined into a single dataset. Z-score transformed percentage marks were analysed by multivariate analysis of variance and univariate analyses of variance for each summative assessment. Numbers of fails at first attempt were analysed aggregated across all assessments initially, then separately for each assessment using Ļ‡2. Results Completion rates were around 90% overall and significantly higher in the graduate entry course. Failures of assessments overall were similar, but a higher proportion of graduate entry students failed the final OSLER. Mean performance on clinical assessments showed a significant overall difference, made up of lower performance on 4 of 5 knowledge-based exams (as well as higher performance on the first exam) by the graduate entry group, but similar levels of performance on all the skills-based and attitudinal assessments. Conclusions High completion rates are encouraging. The lower performance in some knowledge-based exams may reflect lower prior educational attainment, a substantially different demographic profile (age, gender), or an artefact of the first 2 years of a new graduate entry programme

    Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells

    Get PDF
    Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells
    • ā€¦
    corecore