467 research outputs found

    The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning.

    Get PDF
    Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning

    Testing the use of static chamber boxes to monitor greenhouse gas emissions from wood chip storage heaps

    Get PDF
    This study explores the use of static chamber boxes to detect whether there are fugitive emissions of greenhouse gases (GHGs) from a willow chip storage heap. The results from the boxes were compared with those from 3-m stainless steel probes inserted into the core of the heap horizontally and vertically at intervals. The results from probes showed that there were increases of carbon dioxide (CO2) concentrations in the heap over the first 10 days after heap establishment, which were correlated with a temperature rise to 60 °C. As the CO2 declined, there was a small peak in methane (CH4) concentration in probes orientated vertically in the heap. Static chambers positioned at the apex of the heap detected some CO2 fluxes as seen in the probes; however, the quantities were small and random in nature. A small (maximum 5 ppm) flux in CH4 occurred at the same time as the probe concentrations peaked. Overall, the static chamber method was not effective in monitoring fluxes from the heap as there was evidence that gases could enter and leave around the edges of the chambers during the course of the experiment. In general, the use of standard (25 cm high) static chambers for monitoring fluxes from wood chip heaps is not recommended

    Existence and Stability of Standing Pulses in Neural Networks : I Existence

    Full text link
    We consider the existence of standing pulse solutions of a neural network integro-differential equation. These pulses are bistable with the zero state and may be an analogue for short term memory in the brain. The network consists of a single-layer of neurons synaptically connected by lateral inhibition. Our work extends the classic Amari result by considering a non-saturating gain function. We consider a specific connectivity function where the existence conditions for single-pulses can be reduced to the solution of an algebraic system. In addition to the two localized pulse solutions found by Amari, we find that three or more pulses can coexist. We also show the existence of nonconvex ``dimpled'' pulses and double pulses. We map out the pulse shapes and maximum firing rates for different connection weights and gain functions.Comment: 31 pages, 29 figures, submitted to SIAM Journal on Applied Dynamical System

    Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes

    Get PDF
    A pot experiment was conducted to determine the effects of three inoculum levels (2,500, 5,000 and 10,000 eggs/plant) on the reproduction of Meloidogyne hispanica and M. javanica isolates and growth of the susceptible tomato genotypes Easypeel and Moneymaker, and genotypes Motelle and VFnt-Cherr, which possess the Mi-gene, at 25±2°C. sixty days after inoculation, roots were assessed for gall index (Gi), reproduction factor (Rf=final/initial population density) and reproduction index (RI=Rf in the Mi-gene tomato plants/Rf in tomato Easypeel × 100). shoot and root lengths and fresh and dry root and shoot weights were also recorded. both species of Meloidogyne reproduced at all inoculum levels on all four tomato genotypes (4≤GI≤5 and 3.44≤Rf≤317.30). The M. javanica isolate, obtained from an infected potato field, was identified as natural and partially virulent to the Mi-gene (3.71≤RI≤20.19). This emphasizes the need for new sources of resistance to root-knot nematodes and for testing Mi-tomato plants for their susceptibility to local populations. Reproduction of M. javanica and M. hispanica on the resistant Motelle and VFNT-Cherr was significantly less than on the susceptible Easypeel and Moneymaker. VFNT-Cherr was more resistant than Motelle, which suggest an influence of the genetic background of the plants on the nematode response. For Easypeel and Moneymaker, there was a trend of decreased plant growth parameters with increasing inoculum level, irrespective of the nematode species, due to damage caused by the increasing number of nematodes that invaded plant roots. However, these values on Motelle and VFnt-Cherr remained relatively stable regarding shoot and total shoot plus root dry weight. the reproductive rate of M. javanica was greater than that of M. hispanica on all four genotypes tested, and tomato plants inoculated with M. hispanica had greater growth parameters. the resistance response of the Mi-tomato plants was independent of the Meloidogyne species, however, because both species gave similar Ris

    Drone-based Water Sampling and Characterization of Three Freshwater Harmful Algal Blooms in the United States

    Get PDF
    Freshwater harmful algal blooms (HABs), caused mostly by toxic cyanobacteria, produce a range of cyanotoxins that threaten the health of humans and domestic animals. Climate conditions and anthropogenic influences such as agricultural run-off can alter the onset and intensity of HABs. Little is known about the distribution and spread of freshwater HABs. Current sampling protocols in some lakes involve teams of researchers that collect samples by hand from a boat and/or from the shoreline. Water samples can be collected from the surface, from discrete-depth collections, and/or from depth-integrated intervals. These collections are often restricted to certain months of the year, and generally are only performed at a limited number of collection sites. In lakes with active HABs, surface samples are generally sufficient for HAB water quality assessments. We used a unique DrOne Water Sampling SystEm (DOWSE) to collect water samples from the surface of three different HABs in Ohio (Grand Lake St Marys, GLSM and Lake Erie) and Virginia (Lake Anna), United States in 2019. The DOWSE consisted of a 3D-printed sampling device tethered to a drone (uncrewed aerial system, or UAS), and was used to collect surface water samples at different distances (10–100 m) from the shore or from an anchored boat. One hundred and eighty water samples (40 at GLSM, 20 at Lake Erie, and 120 at Lake Anna) were collected and analyzed from 18 drone flights. Our methods included testing for cyanotoxins, phycocyanin, and nutrients from surface water samples. Mean concentrations of microcystins (MCs) in drone water samples were 15.00, 1.92, and 0.02 ppb for GLSM, Lake Erie, and Lake Anna, respectively. Lake Anna had low levels of anatoxin in nearly all (111/120) of the drone water samples. Mean concentrations of phycocyanin in drone water samples were 687, 38, and 62 ppb for GLSM, Lake Erie, and Lake Anna, respectively. High levels of total phosphorus were observed in the drone water samples from GLSM (mean of 0.34 mg/L) and Lake Erie (mean of 0.12 mg/L). Lake Anna had the highest variability of total phosphorus with concentrations that ranged from 0.01 mg/L to 0.21 mg/L, with a mean of 0.06 mg/L. Nitrate levels varied greatly across sites, inverse with bloom biomass, ranging from below detection to 3.64 mg/L, with highest mean values in Lake Erie followed by GLSM and Lake Anna, respectively. Drones offer a rapid, targeted collection of water samples from virtually anywhere on a lake with an active HAB without the need for a boat which can disturb the surrounding water. Drones are, however, limited in their ability to operate during inclement weather such as rain and heavy winds. Collectively, our results highlight numerous opportunities for drone-based water sampling technologies to track, predict, and respond to HABs in the future

    Final grain weight in wheat is not strongly influenced by sugar levels or activities of key starch synthesising enzymes during grain filling

    Get PDF
    Since starch is by far the major component of the mature wheat grain, it has been assumed that variation in the capacity for starch synthesis during grain filling can influence final grain weight. We investigated this assumption by studying a total of 54 wheat genotypes including elite varieties and landraces that were grown in two successive years in fields in the east of England. The weight, water content, sugars, starch, and maximum catalytic activities of two enzymes of starch biosynthesis, ADP-glucose pyrophosphorylase and soluble starch synthase, were measured during grain filling. The relationships between these variables and the weights and starch contents of mature grains were analysed. Final grain weight showed few or no significant correlations with enzyme activities, sugar levels, or starch content during grain filling, or with starch content at maturity. We conclude that neither sugar availability nor enzymatic capacity for starch synthesis during grain filling significantly influenced final grain weight in our field conditions. We suggest that final grain weight may be largely determined by developmental processes prior to grain filling. Starch accumulation then fills the grain to a physical limit set by developmental processes. This conclusion is in accord with those from previous studies in which source or sink strength has been artificially manipulated

    Dissecting wheat grain yield drivers in a mapping population in the UK

    Get PDF
    Improving crop yields arises as a solution to ensure food security in the future scenarios of growing world population, changes in food consumption patterns, climate change and limitation on resources allocated to agriculture. Defining traits that can be reliable cornerstones to yield improvement and understanding their interaction and influence on yield formation is an important part of ensuring the success of breeding programs for high yield. Traits that can drive yield increases, such as light interception and conversion efficiency, carbon assimilation and allocation, were intensively phenotyped in a double-haploid wheat mapping population grown under field conditions in the UK. Traits were analysed for their correlation to yield, genetic variation and broad-sense heritability. Canopy cover and reflectance, biomass production and allocation to stems and leaves, as well as flag leaf photosynthesis at a range of light levels measured pre- and post-anthesis correlated with plant productivity and contributed to explain different strategies of wheat lines to attain high grain yields. This research mapped multiple traits related to light conversion into biomass. The findings highlight the need to phenotype traits throughout the growing season and support the approach of targeting photosynthesis and its components as traits for breeding high yielding wheat
    • …
    corecore