23,556 research outputs found

    Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region

    Get PDF
    The published version of this Article can be accessed from the link below - Copyright @ 2007 American Institute of PhysicsThe phase field theory (PFT) has been applied to predict equilibrium interfacial properties and nucleation barrier in the binary eutectic system Ag-Cu using double well and interpolation functions deduced from a Ginzburg-Landau expansion that considers fcc (face centered cubic) crystal symmetries. The temperature and composition dependent free energies of the liquid and solid phases are taken from CALculation of PHAse Diagrams-type calculations. The model parameters of PFT are fixed so as to recover an interface thickness of approximately 1 nm from molecular dynamics simulations and the interfacial free energies from the experimental dihedral angles available for the pure components. A nontrivial temperature and composition dependence for the equilibrium interfacial free energy is observed. Mapping the possible nucleation pathways, we find that the Ag and Cu rich critical fluctuations compete against each other in the neighborhood of the eutectic composition. The Tolman length is positive and shows a maximum as a function of undercooling. The PFT predictions for the critical undercooling are found to be consistent with experimental results. These results support the view that heterogeneous nucleation took place in the undercooling experiments available at present. We also present calculations using the classical droplet model classical nucleation theory (CNT) and a phenomenological diffuse interface theory (DIT). While the predictions of the CNT with a purely entropic interfacial free energy underestimate the critical undercooling, the DIT results appear to be in a reasonable agreement with the PFT predictions.This work has been supported by the Hungarian Academy of Sciences under Contract No. OTKA-K-62588 and by the ESA PECS Contract Nos. 98005, 98021, and 98043

    Feasibility and benefits of laminar flow control on supersonic cruise airplanes

    Get PDF
    An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated

    Recent Langley helicopter acoustics contributions

    Get PDF
    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included

    Improved high temperature resistant matrix resins

    Get PDF
    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens

    Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine

    Get PDF
    Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg2+ and SO42- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na+/Cl- brines (12.141 mol liter-1). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na2SO4, MgCl2, and MgSO4, yet despite this plasticity the strain was still restricted; requiring either Na+ or Cl- to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance

    A phenomenological model of the superconducting state of the Bechgaard salts

    Full text link
    We present a group theoretical analysis of the superconducting state of the Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are eight symmetry distinct superconducting states. Of these only the (fully gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the full range of the experiments on the Bechgaard salts. The gap of the polar state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is translationally invariant.Comment: 4 pages, no figure

    Multistability in nonlinear left-handed transmission lines

    Full text link
    Employing a nonlinear left-handed transmission line as a model system, we demonstrate experimentally the multi-stability phenomena predicted theoretically for microstructured left-handed metamaterials with a nonlinear response. We show that the bistability is associated with the period doubling which at higher power may result in chaotic dynamics of the transmission line

    Photometric Decomposition of Barred Galaxies

    Full text link
    We present a non-parametric method for decomposition of the light of disk galaxies into disk, bulge and bar components. We have developed and tested the method on a sample of 68 disk galaxies for which we have acquired I-band photometry. The separation of disk and bar light relies on the single assumption that the bar is a straight feature with a different ellipticity and position angle from that of the projected disk. We here present the basic method, but recognise that it can be significantly refined. We identify bars in only 47% of the more nearly face-on galaxies in our sample. The fraction of light in the bar has a broad range from 1.3% to 40% of the total galaxy light. If low-luminosity galaxies have more dominant halos, and if halos contribute to bar stability, the luminosity functions of barred and unbarred galaxies should differ markedly; while our sample is small, we find only a slight difference of low significance.Comment: Accepted to appear in AJ, 36 pages, 9 figures, full on-line figures available at http://www.physics.rutgers.edu/~sellwood/Reese.htm

    Statistical mechanics of glass transition in lattice molecule models

    Full text link
    Lattice molecule models are proposed in order to study statistical mechanics of glass transition in finite dimensions. Molecules in the models are represented by hard Wang tiles and their density is controlled by a chemical potential. An infinite series of irregular ground states are constructed theoretically. By defining a glass order parameter as a collection of the overlap with each ground state, a thermodynamic transition to a glass phase is found in a stratified Wang tiles model on a cubic lattice.Comment: 18 pages, 8 figure
    corecore