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FOREWORD

This report was prepared by TRW F'lectronics and Defense Sector under

Contract NAS3-23274, "Improved High Temperature Resistant Matrix Resins".

The technical effort was conducted dur wing 1982 under sponsorship of NASA

Lewis Research Center. Dr. Tito T. Serafini served as the NASA program

monitor.

The project team at TRW consisted of Dr. Robert J, Jones, program

manager, Dr. Glenn E. C. Chang, principal investigator and Mr. Steven H.

Powell, who was responsible for polymer fabrication studies. Ms. Christine

P. Brown assisted in polymer processing studies. Monome. and polymer

characterization work was conducted under the direction of Mr. Michael K.

0"Bell. Participants in the characterization work included Mrs. Judy W.

Scott, Mr. John F. Clausen and Mr. Thomas W. May.
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SUMMARY

This final report document describes the work performed by the

TRW Electronics and Defense Sector for the National Aeronautics and

Space Administration, Lewis Research Center, under Contract

NAS3-23274. The technical work was performed during the period of

January through December, 1982.
m

The objective of this program was to develop organic matrix

resins suitable for service at temperatures up to 644°K (700°F) and

at air pressures up to 0.4 MPa (60 psia) for time durations of a
	 t

minimum of one hundred hours. Matrix resins capable of withstanding

these extreme oxidative environmental conditions would lead to

increased use of polymer matrix composites in aircraft engines and

provide significant weight and cost savings.

In this program, six linear condensation, aromatic/heterocyclic

polymers containing fluorinated and/or biphenyl linkages were

synthesized. The thermo-oxidative stability of the resins was

determined at 644 °K and compressed air pressures up to 0.4 MPa. Two

formulations, both containing perfluoroisopropylidene linkages in

the polymer backbone structure, exhibited potential for 644°K service

to meet the program objectives. Two other formulations could not

be fabricated into compression molded zero defect specimens.

t

v	 r.

106,
_^ r



AL

it

1.0 INTRODUCTION

This final report documents the work performed by TRW Electronics

and Defense Sector for the National Aeronautics and Space Administration,

Lewis Research Center, under Contract NAS3-23274. The effort was

conducted during 1982. The objective of the program was to develop new

organic matrix resin candidates suitable for service as advanced jet

engine compressor components which operate in extreme oxidative

environments consisting of temperatures up to 644°K (700°F) and pressures

up to 0.4 MPa (60 psia or four atmospheres).

Designs and performance requirements for advanced jet engine

hardware offering significant improvements in fuel efficiency, coupled

with increased maneuverability performance, demand the increased use of

x
advanced composite, particularly polymer matrix composites. This program

addressed the feasibility for synthesizing organic matrix resins capable

of surviving the extreme oxidative conditions projected to be encountered

during exposure iii the compressor section of advanced engines.

Preliminary studies performed by the General Electric Aircraft

Engine Group, Evendale facility showed that linear condensation polyimides

containing a perfluoroisopropylidene linkage, shown below, may be

suitable for 644°K (700 0 F) service in highly oxidative environments

(Reference 1).

CF3

-c_

CF3

The General Electric experimental work on thermo-oxidative stability at

644°K in compressed air environments was conducted on the Du Pont

polyimide, NR-1505 (Reference 2), which is no longer available as a

general item of commerce. Although this polyimide possesses a glass

transition temperature of less than 644°K, it demonstrated capability

for resisting oxidative degradation at thistemperature. Thus, a

polyimide matrix resin containing a minimum of one perfluoroisopropylidene

linkage in the polymer backbone repeat unit, plus glass transition

}
P
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temperature greater than 644°K appeared to be a model baseline polymer

which had the potential to meet the objectives of this program.

Under NASA Lewis Research Center sponsorship on Contract NAS3-17824

(Reference 3), TRW synthesized and s^'Peened a new family of linear

condensation pollyimides containing a perfluor'•oisopropylidene backbone

linkage. These polymers, subsequently designated partially fluorinated

polyimides, were prepared from a new diamine monomer containing the

perfluoroisopropylidene linkage. Specifically, it was discovered that a

new aromatic diamine monomer, 2, 2-bis[4-(4-aminophenoxy)phenyl ]hex afluo-

ropropane (shown below and designated 4-BDAF) could be used to prepare

linear condensation polyimides possessing initial thermo-oxidative

CF3

O G 0 C —r	 t 	 2
C

te,	
NN

F	
—^`.^

4-BDAF

stabilities determined by thermalgravimetric analysis approaching 773°K

(932 0 F). Subsequent investigations at TRW and General Electric showed

that Tg of the polyimide prepared from 4-BDAF diamine and pyromellitic

dianhydride (PMDA) could be as high as 663°K (737°F) (Reference 1). Thus,

the 4-BDAF/PMDA polyimide was selected as the baseline resin structure

for this program.

Experimental work conducted on this program identified that the

baseline 4-BDAF/PMDA polyimide formulation and a new candidate, synthesized

from 4-BDAF diamine and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane

dianhydride (designated 6-FDA), have potential for 644°K service. Two

other new resin candidates, based upon a halogen substituted 4-BDAF

derivation combined with both PMDA and 6-FDA demonstrated promising thermo-

oxidative stability at 644°K. However, these two candidates could not be

compression molded into zero defect neat resin test specimens. The latter,

however, could be solution cast into tough films and, thus, may be

2

1

k.



suitable for applications other than matrix resins (e.g., protective

coatings).

This final report is divided into the additional sections as follows;

2.0 SELECTION OF CANDIDATE MATRIX RESINS

3,0 POLYMER SYNTHESIS AND CHARACTERIZATION

4.0 PROCESSING STUDIES

5.0 NEAT RESIN THERMO-OXIDATIVE STABILITY

6.0 CONCL.U3IONS AND RECOMMENDATIONS
U

7.0 REFERENCES

8.0 APPENDICES

i

t
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2.0 SELECTION OF CANDIDATE MATRIX RESINS

The initial effort conducted on the program involved selection of

candidate generic matrix resins for investigation. An integral subsequent

portion of this activity emphasized monomer ingredient and specific

polymer structure selection. The selection process is described below.

2.1 SELECTION OF CANDIDATE GENERIC MATRIX RESINS

The initial work conducted on the program involved selection of a

generic aromatic/heterocyclic matrix resin system having given preliminary

evidence for oxidative stability and thermo-mechanical integrity at 644°K

(700 0 F). A key factor in the selection process was also evidence for

isothermal oxidative stability in air environments up to 0.4 MPa (60 psia).

The selection process was conducted by assessment of published

information and contacts made with government and industrial organizations

known to have participated in development of high temperature matrix

resins. The selection criteria employed in this effort are as follows in

descending importance:

• Resistance to initial weight loss by thermalgravimetric analysis
(TGA) in air > 616°K (842°F)

• High weight retention (90% or greater) on isothermal aging for a
minimum of 100 hours in air pressure at temperatures of 6160K
(650°F) or greater

* High initial glass transition temperature of 616°K or greater

• High weight retention (90% or greater) on isothermal aging for a
minimum of 100 hours in 0.4 MPa (60 psis) air pressure at
temperatures of 616°K or greater

Other criteria such as processability, future availability, costs, and

monomer toxicity were considered, but not to the extent of the thermo-

oxidative and glass transition temperature factors.

During the literature assessment and trade contact effort, it was

discovered that only minimal high temperature (i.e., 616°K or greater)

data existed on high performance polymer systems that may have been

viable candidates for this program. The most comprehensive source of

+►"`	 5
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y 	 useful polymer characterization data at temperatures of 616°K or greater	 .^

was found to exist at the General Electric, Aircraft Engine Group, Even-

dale facility (Reference l). It was found that data existed on oxidative

stability of neat (i.e., non-reinforced) polymer candidates at tempera-

tures up to 6309K (675°F) under compressed air pressures up to 0.4 MPa

(60 psia) for time durations of up to several hundred hours. Also, glass

transition temperature information existed for many of the polymers tested.

At the time that the polymer selection was performed, discussions

with General Electric representatives indicated that several linear
A

condensation and thermosetting polyimides exhibited potential for engine

applications at 533°K to 589°K (500°F to 600 0 F) in compressed air

environments up to 0.4 MPa. However, very few polymers had given promis-

ing characterization results on oxidative aging at 630°K (615°F) at 0.4 MPa.

The two polymers assessed by General Electric to have potential for

service at 630°K (675°F) in compressed air environments were both linear

condensation polyimides. One candidate was DuPont's RJR-1506 polyimide

(Refer,;i^	 and the other was a partially fluorinated polyimide

(Refer • nce 4) being developed by TRW.

The two polyimides have a similarity in the polymer backbone structure

which is thought to be an important factor in contributing to their very

high thermo-oxidative stability. Each resin has a perfluoroisopropylidene

linkage, shown below, incorporated into the structure.
C

CF3

CF3

PERFLUOROISOPROPYI,IDENE LINKAGE.

A comparison of the oxidative stabilities and the glass transition

temperatures of the DuPont and TRW polyimides is provided in Table 1. As

can be seen from the screening results presented in Table 1, both of the

polyimides demonstrate an acceptable, low neat resin weight loss of less

6
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TABLE 1

COMPARISO,Y OF THE OXIDATIVE STABILITY AND GLASS
TRANSITION TEMPERATURE OF PROMISING DU PONT AND

TRW POLYIMIDES

Key Properties
Glass	 Oxidative
Transition 

a)	
Stability at

Poly mide	 Temperature	 630°K (6750F)b)

Du Pont NR-1508	 633°K (680-F)	 95% Weight
Retention

TIRW Partially Fluorinated	 665°K (738°F)	 91% Weight
Polyimide	 Retention

a)
Determined on a DuPont Model 990 thermalmechanical analysis
attachment operating in a penetration mode.

b) Determined on neat resin discs employing aging conditions of a 630°K
(675°F) temperature for 100 hours employing 0.4 MPa compressed air
flow.

than ten percent in the oxidative test at 630°K (675°F) under 0.4 MPa

pressure for one hundred hours. However, only the TRW polyimide possesses

a glass transition temperature greater than the minimum goal of 644°K.

The unavailability of NR-1506 necessitates the elimination of this

resin as a candidate for investigation on this program.

On the basis of the literature and trade assessment, particularly the

General Electric test results presented in Table 1, TRW recommended that

modifications of the partially fluorinated polyimides be synthesized to

meet the objectives of the program for 644°K service. This recommendation

was approved by the NASA Lewis Research Center program manager.

7	
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This section discusses the partially fluorinated polyimides which

were selected for study on this program.

In 1975, on NASA Lewis Research Center Contract NAS3-17824 (Reference

3), TRW discovered a new partially fluorinated aromatic diamine. This new

compound, 2,2- bis[4-( 4-aminophenoxy )phenyl]hexafluoronropane (designated

4-BDAF) is shown in the structure below. This diamine was reacted with

several aromatic dianhydrides on this prior program. It was determined

that the linear condensation polyimide prepared from 4-BDAF diamine and

CFA

May .1 p ^-cF-^n1 O-WMZ

4-BDAF

pyromellitic dianhydride (PMDA) possessed a very high resistance to initial

weight loss in air by thermalgravimetric analysis. No weight loss was

observed up to 763°K (914°F) in this screening analysis.

In 1980, in response to urging by the jet engine primes and govern-

ment agencies, TRW initiated studies to determine whether the partially

fluorinated polyimides produced from 4-BDAF diamine had promise for matrix

applications. A secondary objective was to assess their potential as a

substitute for the very high performance NR-150B polyimides.

As was mentioned in Section 2.1, both the TRW partially fluorinated	 I

and the NR-150B polyimides each contain a perfluoroisopropylidene linkage 	 l

in the backbone structure. Representative polyimide structures are shown

below for each resin family. The 1980 study determined that the 4-BDAF/PMDA 	 C

formulation possessed a glass transition temperature of 665°K (738°F) and

that the polyimide prepared from 4-BDAF and 3,3',4,4'-benzophenonetetra-

carboxylic as', id dianhydride (,BTDA) possessed a glass transition temperature

of only 583°K (590 0 F). This low glass transition temperature rendered the

8	
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REPRESENTATIVE NR-150B POLYIMIDE

4-BDAF/BTDA polyimide unsuitable for investigation in this program.

At the time the experimental work on this program was planned in k

detail, Morton Chemical 	 Division of Morton Thiokol	 became a source for

commercial	 production of the 4-BDAF diamine. 	 The 4-BDAF diamine,

produced by Morton Chemical at a minimum of 95% purity, was used through-

out this NASA sponsored program. 	 Additional data on the 4-BDAF diamine

produced by Morton Chemical 	 are provided in Section 3.
{

Based upon data existing at the time this investigation was initiated,

a total	 of six monomeric ingredients were selected for investigation to

prepare polyimides to be screened for 644°K (700°F) service. 	 The monomers

selected for study and the rationale for selection are as follows (see

Table 2 for chemical	 structures):

•	 Aromatic Anhydrides
i

"'	 # Compound 	 Rationale for Selection

i-	 Pyrore??itic Dianhydride	 (PMDA)	 Showed promise in preliminary

evaluation at General	 Electric
and TR IG as a	 co-ingredient in
combint	 n with 4-EDAF diamine

w

9
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V

- 2,2-Bis(3,4-dicarboxyphenyl)
hexafluoropropane Dianhydride
(6-FDA)

• Aromatic Diamines

- 2,2-Bis[4-aminophenoxy)-
phenyl ]hexafluoropropane
(4-BDAF)

- 2,2-Bis[4-(3-halo-4-amino-
phenoxy)phenyl"hexafluoro-
propane (3-H-4-8 DAF)

Showed promise as the dianhydride
ingredient in the Du Pont NR-1508
polyimides

Showed promise as the diamine
ingredient in combination with
PMDA in prior work

A 3-halo substituent may induc-
tively or sterically stabilize
the imide linkage in polymers
prepared from this compound

— 2,2-Bis[4-(2-halo-4-amino-	 A 2-halo substituent may induc-
phenoxy)phenyllhexafluoropro- 	 tively or sterically stabilize
pane (2-H-4-BDAF)	 the ether linkage in polymers

prepared from this compound.

— 4,4'-Bis(4-aminophenoxy)
biphenyl (4-BPDA)

A biphenyl linkage replacing the
perfluoroisopropy1'idene linkage
in a diamine containing four
aromatic rings may offer thermo-
oxidative stability, process-
ability and/or lower cost
advantages over the other three
diamine candidates.

It was decided to investigate introduction of a chlorine atom as the

halogen substituent in 3-H-4-BDAF and 2-H-4-BDAF (see Section 3).

The initial polyilnides selected for investigation included six

combinations of the ingredients described above. The six polyimides

selected for study are as follows (see Table 2 for monomer structures):

• 4-BDAF/PMDA (selected as the control resin)

• 2-H-4-BDAF/PMDA (new candidate)

• 2-H-4-BDAF/6-FDA (new candidate)

• 3-H-4-BDAF/PMDA (new candidate)

• 4-BPDA/PMDA (new candidate)

4-BPDA/6-FDA (new candidate)
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A reiteration of the polyimides selected for investigation is provided

in Table 3.

A discussion of the synthesis and characterization of the monomers

and polymers selected for study is provided in Section 3.

TABLE 3

MATRIX OF POLYIMIDES SELECTED

FOR INITIAL STUDY

Aromatic Diamines
Aromatic Dianhydrides	 2-N-4-BDAF 3-N-4-BDAF	 4-BPDA	 4-BDAF

PMDA	 X	 X	 X	 X (control)

6-FDA	 X	 X

i
h
E

a) See Table 2 for chemical names and structures of the dianhydrides
and diamines.
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3.0 POLYMER SYNTHESIS AND CHARACTERIZATION

The synthesise and characterization of the polyimide candidates

selected for study is presented in this section. The synthesis or
8	

procurement and characterization of the monomers employed in this

investigation is presented first, followed by a discussion of polyimide

preparation and characterization.

3.1 MONOMER SYNTHESIS AND CHARACTERIZATION

Prior to undertaking polyimide studies it was necessa? y to synthesize

or procure the six monomeric ingredients selected as discussed in Section

2. A chlorine substituent was selected as the halogen to be investigated

in halogen modified 4-BDAF diamines. A summary of the approach employed

to secure each monomeric ingredient is as follows:

• Dianhydrides

- PMDA: Procure from commercial sources

- 6-FDA: Recover from NR-1506 polyimide samples

• Diamines

- 4-BDAF: Procure from Morton Chemical

- 2-C1-4-BDAF: Synthesize this new compound

- 3-C1-4-BDAF: Synthesize this new compound

- 4-BPDA: Synthesize this new compound

A description of the effort conducted to secure the monomers prior to

initiating polyimide studies is described below.

3.1.1 Procurement of Dianhydride Ingredient s

The PMDA and 6-FDA aromatic dianhydrides employed in this study were

procured from available sources. Each compound was thermally treated at

473°K (392°F) to assure a high degree of ring closure of the carboxylic

acid substituents to the desired anhydride derivative. Each dianhydride,

after thermal treatment, was characterized for melting point and dian-

hydride content. A sj.,mmary of these data is provided in Table 4. Only

those dianhydride samples analyzing to contain a > 95% anhydride content

were employed to prepare polyimides as discussed in Section 3.2.

W
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TABLE 4

ANALYSIS OF AROMATIC DIANHYDRIDES

	

Melting Point (°K/°F) d)	Dianhydride Content (meq/g)b)

Dianhydride	 Determined	 Literature	 Determined	 Theoretical

PMDA	 560/549	 559/347	 8.82	 9.17

6-FDA	 519/475	 525/486	 4.37	 4.77

i

a) Determined on a Du Pont Model 1090 differential scanning calorimeter.
	 E

b)

Determined by non-aqueous titration in ethyl acetate.

3.1.2 Synthesis and Characterization of Diamine Ingredients

r'
	 The synthesis of the aromatic diamines selected for study in this

investigation was attempted for each by the reaction sequence given in

Equation 1. This chemical reaction is that claimed by TRW for prepara-

tion of 4-BDAF diamine (Reference 5).

16
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The synthesis of each new diamine, 2-C1-4-BDAF, 3-C1-4-BDAF and

4-BPDA, was attempted employing the TRW developed process shown in

Equation 1. It was experimentally determined that the new 2-C1-4-BDAF

and 4-BPDA diamines could be prepared in relatively high yield and purity

by this reaction. Characterization data obtained on these compounds are

summarized in Table 5. The experimental procedures and representative

analysis spectra are presented in Appendix A. These new diamines were

employed to synthesize new polyimide candidates as discussed in Section

3.2.

It was experimentally determined that the 3-C1-4-BDAF diamine

candidate could not be prepared in an acceptable yield or purity level

by the nucleophilic reaction sequence shown in Equation 1. The key

starting ingredient, 2,4-dichloronitrobenzene, apparently is susceptible

to a high degree of nucleophilic attack by the disodium salt of 2,2-bis-

(4-hydroxyphenyl)hexafluoropropane (designated bisphenol A-F) at both

the orEho and Para chlorine substitutes. Thin layer chromatographic

analysis repeatedly showed a minimum of three major reaction products,

which most probably consisted of 2-, 4- and 2,4- nucleophilic substitution

of 2,44ichloronitrobenzene by the dianion of bisphenol A-F. It was

recommended by TRW that the 3-•C1-4-BDAF diamine be dropped from further

consideration as a diamine candidate on this program. This recommenda-

tion was approved by the NASA program manager. An alternative polyimide

was approved for investigation to replace the 3-C1-4-BDAF/PMDA polyimide

initially selected for investigation as summarized in Table 3. The

alternative polymer selection is presented and discussed in Section 3.2.

The conversion of the PMDA, 6-FDA, 4-BDAF, 2-C1-4-BDAF and 4-BDAF

monomers into 644°K polyimide candidates and their subsequent characteriza-

tion is described in Section 3.2.

3.2 POLYIMIDE SYNTHESIS AND CHARACTERIZATION

This section provides technical details of the polyimide synthesis and

characterization investigation conducted on the program. A total of six

polymer candidates.were screened, including 4-BDAF/PMDA as the control

resin, plus five new polyimides.
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NO22 * X	 *	 Na0 -^Q " Y—<0 ONE
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NO2—QL 
0 
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0 _qNO2

X	
x

H2 
-v Pd

0	 NH2

H2N	 0
y	

x

WHERE: X	 H or Cl; Y	 C(CF3)2 or Direct Bond

Equation I. Synthetic Sequence Employed
for Diamine Synthesis
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3.2.1 Polyimide Synthesis

The following polyimide resins were synthesized on the program as

follows (see Table 2 for monomer structures):

• 4-BDAF/PMDA (control),

2-C1-4-BDAF/PMDA,

• 2-C1-4-BDAF/6-FDA,

• 4••BDAF/6-FDA(substituted for 3-Cl-4-BDAF/6-FDA due to unavail-
ability of 3-C1-4-BDAF)

4-BPDA/PMDA

9 4-BPDA/6-FDA

The process employed co prepare the candidate resins is described below.

Tha six polyimides were prepared in solution as their amide-acid

precursors, followed by solvent evaporation in vacua, then thermally

imidized in air at 473°K (392 0 F). Dimethylacetimide (DMAC') was employed

as the polymerization solvent and the monomers were combined at a twenty-

five percent (25%) solids loading in the solvent. This solvent and

varnish solids loading were selected because prior work employing this

combination yielded the promising initial thermo-mechanical results

determined on the 4-BDAF/PMDA as discussed in Section 2.

A representative reaction sequence employed to prepare the linear

condensation polymide candidates is provided in Equation 2. Detailed

R	 experimental procedures employed to prepare the amide-acid precursor,

then isolate the polyimide candid p t^^;s are provided in Appendix C.

No problems were encountered during the polymerization and polyimide

isolation experimentation. The screening characterization conducted

on the six polyimide candidates is discussed below.

3.2.2 Polyimide Characterization

The five new polyimide candidates, plus the control, which were

synthesized by the method described in Section 3.2.1, were analyzed for

key structural, molecular weight and thermo-oxidative stability character-

istics. The specific characterization tests conducted on each polyimide

are as follows;

20
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Equation 2. Reaction Employed to Form the Linear
Condensation Pelyimide Candidate 4-BDAF/PMDA

• Molecular weight distribution by gel permeation chromatography

e Structural behavior by infrared a-ilysis

• Initial thereto-oxidative stability by thermalgravimetric analysis
in air

• Isothermal thermo-oxidative stability by aging in air at 644°K
for 240 hours

No phase changes ascribable to a normal resin melting point or glass

transition temperature could be determined by differential scanning

calorimetry analysis. Also, no dynamic melt viscosity results could be

obtained by Rheometrics instrumentation due to instrumental temperature

limitations of 673°K (725°F) maximum operating temperature.

3.2.2.1 Gel Permeation Chromatography

The five new polymer samples and the 4-BDAF/PMDA control were

21
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analyzed for comparison of the relative molecular weight distribution by

gel permeation chromatography (GPC). The polymers were tested as the

amide-acid precursors of the polyimides.

The samples were analyzed on a Waters Model 150C GPC nstrumert

equipped with 10 5 , 104 and 103 p-styragel columns connected in series.

The column oven, injector compartment and pump temperature, were held at

308°K, 308°K and 300°K, respectively. The samples were injected at a

volume of 100 ul at a concentration of 2% by weight in dimpthylformamide

OMF) solvent. The run time employed was 45 minutes for each sample. A

Spectra Physics Model SP 4000 data system was used to monitor and plot

the sample elution as determined by an infrared detector.

The representative GPC tracings for the 4-BDAF/PMDA control and

4-BDAF/6-FDA are shown in Figures l and 2, respectively. The elution data

and key comments for all the polyimides are summarized in Table 6.

Each sample gave a bimodal peak in the retention time range of 759	 x
t

to 1159 seconds for higher molecular weight polymer with varying amounts	 y

of lower molecular weight material occurring down to a retention time of

1799 seconds.

The presence of a significant amournt of lower molecular weight

fractions, particularly in the 4-BPDA/PMDA and 4-BPDA/6-FDA polymers, may

have been a significant contributor to the high weight loss observed in

isothermal aging in air at 644 0 k (700°F) as discussed in Section 3.2.2.4.

3.2.2.2 Infrared Analysis

The spectra obtained are typical of those normally obtained for

linear condensation polyimides. Key absorption band data are summarized

`	 in Table 7. Representative infrared tracings are presented in Figures

3 and 4 for 4-BDAF/PMDA and 4 BDAF/6-FDA, respectively.
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TABLE 7

SUMMARY OF INFRARED ANALYSES a)

Key Infrared Absorption Bands (cm-1)

Polyimide Candidate Imide -CF3

4-BDAF/PMDA 1650 and 1750 1150 and 1300

4-BDAF/6-FDA 1680 and 1740 1060 and 1300
k

2-C1-4-BDAF/PMDA 1680 and 1760 1080 and 1200

2-C1-4-BDAF/6-FDA 1680 and 1740 1050 and 1300

4-BPDA/PMDA 1650 and 1750 -	 --
r

4-BPDA/6-FDA 1650 and 1710 1045 and 1340

a) Determined on a Perkin-Elmer Model 283 Spectrometer employing	 r
polyimide powder in KBr.

1

3.2.2.3 Thermalgravimetric Analysis

The five new polyimide candidates, plus the control, were screened

for initial thermo-oxidative stability in air by thermal gravimetric

analysis (TGA). Prior to testing the polyimides were postcured for four
1

hours at 672°K (750 0 F). The conditions employed for the TGA analysis

were a heating rate of 283°K (10°C) per minute employing an air flow of

60cc per minute. The TGA analyses were performed on a DuPont Model 990

instrument. The TGA results for each polyimide are presented in Table 8.
A representative TGA tracing is presented in Figure 5 for 2-C1-4-BDAF/6-

FDA.

The TGA results on each polyimide were interpreted to be promising.

Polymers which exhibited a weight loss onset temperature of at least 713°K
(826 °F)in air were considered to have potential for longer-term oxidative

stability performance at 644°K (700 °F). Only those polyimides containing

a perfluoroisopropylidene linkage showed promise on isothermal aging at

644°K.

26
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It 	 TABLE 8

THERMALGRAVIMETRIC ANALYSIS IN AIRa)

Polyimide	 Temperature Yielding 'Indicated Weight Loss (°K/°F)
Candidate	 Onset	 50%	 10%

4-BDAF/PMDA	 748/887	 806/995	 823/1022
(Control)

4-BDAF/6-FDA
2-C1-4-BDAF/	 723/842	 810/999	 828/1031

PMDA
2-C1-4 -BDAF/ 	 748/887	 803/986	 813/1013

6-FDA
4-BPDA/PMDA	 723/842	 -	 793/968	 81,10/999
4-BPDA/6-FDA	 713/826	 783/950	 798/977

a) Determined on nominal 25 -mesh polyimide powder, postcured for four
hours at 672 °K (750°F) in air, employing a Du Pont Model 990 TGA
using a 283°K (10°C) heating rate/minute at an air flow of 60 cc/
minute.

4

3.2.2.4	 Isothermal	 Thermo-oxidative Stability Assessment

Each of the five new polymers, 2-C1-4-BDAF/PMDA, 2-C1-4-BDAF/6-FDA,

4-BDAF/6-FDA, 4-BPDA/PMDA and 4-BPDA/6-FDA, plus the 4-BDAF/PMDA control,

was assessed for thermo-oxidative stability by isothermal aging in air at

644°K for two hundred and forty hours. 	 The polyimides were tested as

powders to assure large surface areas for exposure and acceleration of

air oxidation to rapidly discern the relative thermo-oxidative stability

of the candidates„ 	 A molded specimen (one-half of a disc 2.54 cm diam.,

0.63 cm thick) of the 4-BDAF/PMDA control was included in the test for

comparison with the same material 	 in powder form.

The results of the thermo-oxidative assessment are presented in

Table 9.	 The 644°K aging results are plotted in Figure 6.

The samples were prepared by solvent drying and imidization for

20-24 hours at 493°K (436°F).	 The polyimide candidates were powdered in

a blender, then screened to an average 25-mesh-size particles. 	 The
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powders were then postcured in a Blue M CFD-10F-4 oven at 672°K (750°F)

for four hours in air. The weight loss that occurred for the resin

powders and the neat resin slug are given in Table 9.

The samples were placed in number 06 porcelain crucibles and aged

in the Blue M Model CFD-lOF-4 oven. The samples were aged at 6440K

(700°F) for two-hundred and forty hours employing an air flow of 11.8

cc/second. Bottled air was employed as the oxidizing atmosphere.

The weight loss data given in Table 9 show definite trends as to

the type of new polyimides thought to be suitable for further evaluation.

The polyimide candidates 4-BDAF/6-FDA, 2-C1-4-BDAF/PMDA and 2-C1-4-BDAF/

6-FDA were judged to be worthy of further study in the program. This

conclusion was based on the fact that through 109 hours of aging the

disc of the 4-BDAF/PMDA control lost only 5% weight over this aging

period versus a fourfold higher weight loss of the powder at 21%. A

similar neat resin slug sample of 4-BDAF/PMDA prepared from the same

previous resin lot lost only 8/ by weight when aged for 100 hours at

357°C (675°F) under 0.4 MPa (60 psi) compressed air flow in prior work

conducted at General Electric. The relative weight loss through 109

hours of 24%, 29%, and 13% for 4-BDAF/6-FDA, 2-C1-4-BDAF/PMDA and

2-CI-4-BDAF/6-FDA, respectively, could be expected to be reduced (e.g.,

perhaps up to a four-or fivefold reduction).

Conversely, the two resins prepared from 4-,BF'DA diamine, 4-B'PDA/PMDA

and 4-BPDA/6-FDA, clearly are not suitable for consideration for service

at 644°K. Although the high weight loss was most probably due to the

presence of low molecular weight polymer (see Section 3.2.2.1), the

extremely high rate of degradation could have involved rapid thermal and/

or oxidative decomposition of the polyimide backbone. This instability

was not anticipated, because the candidates did not show an onset of

decomposition in air by TGA until a temperature was reached of 713°K

(826°F).

^o
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3.2.2.5 Selection of Promising Candidates for Further Study

Based upon the polyimide powder aging studies conducted at 644°K as

discussed above, resin candidates 4- BDAF/6-FDA, 2-C1-4-BDAF/PMDA and

2-C1-4-BDAF/6-FDA, plus the 4- BDAF/PMDA control, were recommended to the

NASA program manager by TRW for further study. Approval was obtained to

employ these resins to initiate processing studies. Investigation of the

processability characteristics of these promising 644°K polyimide candi-

dates is presented in Section 4.

V
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4.0 PROCESSING STUDIES

This section describes the compression molding investigation of the

4-BDAF/6-FDA, 2=C1-4-BDAF/PMDA and 2-C1-4-BDAF/6-FDA polyimide candidates,

plus the 4-BDAF/PMDA control. Prior to conducting the fabrication study,

a method was developed to provide neat resin molding powders that were

essentially void of residual solvent and detectable aqueous condensation

volatiles.

4.1 PREPARATION OF NEAT POLYIMIDE MOLDING POWDERS

Prior to initiation of this program, no studies had been conducted by

TRW to define experimental conditions giving neat resin molding compounds

that were vssentially free of residual 	 solvent and retained aqueous con-

densation volatile matter. 	 Volatile matter evolving at temperatures up to

644°K was suspected to be a source of compression molding non-reproducibility

a

in prior studies (References 1 	 and 6).

In the polyimide synthesis and characterization studies discussed in

" Section 3.2, neat resin powders were prepared by a thermal 	 solvent drying,'

imidization cycle at 473°K (395°F) under vacuum, followed by postcure in

' air for two to four hours at 632°K (750 0 F).	 Molding powders prepared by

this method could not be compression molded at temperatures up to 755°K

(900°F) and pressures up to 68 MPa (10,000 psis) 	 into consolidated neat

resin discs.	 Conversely, molding compounds that ware solvent dried and

imidized only at 473°K apparently evolved considerable volatile matter

giving voidy, micro-cracked discs upon molding at process conditions up to

755°K and 68 MPa.	 Thus, it was necessary to define conditions that did

not overcure the powders as apparently occurred upon postcure at 632°K, yet

removed essentially all	 residual	 solvent and aqueous condensation volatile

matter.	
I

^i

A thermalgravimetric analysis (TGA)	 study was conducted on the poly- 	 II

imide powders after a three hour imidization cycle at 473°K in vacuo

14 (s 1 Torr).	 It was determined that the powders consistently lost 3% to

-- 4% of volatile matter when heated up to u 773°K (500°C or 932 0 F).	 This

weight loss occurred in the temperature range of approximately 463°K	 1
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(190°F or 374°F) up to 633°K (360 00 or 680 0F). Loss of weight in this

temperature range strongly infers that residual solvent and further

imidization was occurring. A representative TGA tracing is presented in

Figure 7 for 4-BDAF/PMDA.
A

An investigation was conducted to determine the minimum postcure

conditions required to eliminate evaluation of volatile matter, yet not

overcure the polyimide as was observed when the powders were heated at

632°K. Screening of heating or postcure temperatures in the temperature

range of 633°K (360°C or 680°F) to 673°K (390°C or 734°F) for different

time durations determined that a one hour postcure in air at 644°K (700°F)

was sufficient to essentially eliminate volatile matter to the detect-

ability limit of the TGA. A representative TGA tracing for the 4-BDAF/

PMDA polyimide powder which was imidized at 473°K (392 0 F), followed by a

one hour postcure at 644°K (700 0 F),is shown in Figure B. Most importantly,

the 4-BDAF/6-FDA and 4-BDAF/PMDA polyimide powders prepared by this process

could be compression molded into essentially defect free neat resin discs.

The fabrication investigation is described in Section 4.2.

4.2 COMPRESSION MOLDING STUDIES

Prior to initiation of this program, molding of the 4-BDAF/PMDA 	 z

control resin had been conducted employing press hardware and tooling that

did not possess heat sources that allowed close tolerance control of the

compression molding temperatures in the desired range of 672°K (750°F to

900 0 F). It was necessary to define and employ the close tolerance

fabrication equipment in this program. A description of the compression

processing equipment and the successful use of this hardware to mold two 	 E

resin candidates is presented below.	 i

	

.	 i
4.2.1 Process Equipment. Definition

The tooling selected to initiate the compression molding studies were	 M

three-pant Carver molds which are available in inner-diameter sizes of

2.54-cm (1-inch) up to 6.35-cm (2.5-inch) for experimental fabrication work.

The disassembled, 2.54-cm Carver mold is shown in Figure 9. It was

64	
determined that the tooling must be externally heated to maintain close	 j

	-^	 tolerance temperature control to + 2°C (± 5°F) over the temperature range

	

oil
i'	 of 672°K to 755°K (750°F to 900 0F). An Ogden band extruder barrel heater
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Figure 9. Disassembled Mold and Heater

Employed for Polyimide Fabrication.

Figure 10. Assembled Mold and Heater Employed

for Polyimide Fabrication

k

39



^l

ORIGINAL PAGE SS
OF POOR QUALrry

capable of generating a maximum temperature of 911°K. (11100°F) was selected

as the tooling heater.	 This Ogden heater is also shown in Figure q . A

photograph of the assembled Carver mold and Ogden heater is shown in

Figure 10.

The tooling and heater was e(juiG;)ed with three thermocouple leads

around the circumference and placed in a hand operated press. The press

selected for the study was capable of a maximum pressure of 272 MPa

(40,000 psi) and a maximum platen temperature of 311'K (1000°F). A

photograph of the tooling/heater assembly readied for molding in the

press is provided ir. Figure 11.

Figure 11.	 Press Fmployed for Polyimide Fabrication
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The compression molding investigation employing the experimental

arrangement described above is discussed in Section 4.2.2.

4.2.2 Compression Molding Process Investigation

An investigation was conducted to determine processing cycles suit-

able to yield neat resin compression molded discs possessing structure

essentially free of defects in terms of voids and microcracks. This study

employed polyimide molding powders prepared by the process described in

Section 4.1. The fabrication hardware employed was described in the

preceding section.

Prior compression molding screening studies conducted at General

Electric (Reference 1) and TRW on the 4-BDAF/PMDA, established that very

high processing conditions were required to fabricate neat resin samples

possessing acceptable consolidation. This prior work, employing temper-

atures up to 755°K (900°F) and pressures up to 34 MPa (5000 psia), did

not consistently yield zero defect specimens. However, the effort did

indicate that a minimum polyimide specific gravity of 1.4 was achievable,

This prior work provided the baseline information for the effort conducted

in this program. In addition to an initial prior processing history, the

4-BDAF/PMDA polyimide was available in significantly larger quantities than

the new 4-BDAF/6-FDA, 2-C1-4-BDAF/PMDA and 2-C1-4-BDAF/6-FDA candidates.

Therefore, this control resin was selected to initiate the compression

molding investigation.

Screening of the polyimide candidates to melt or become tacky was

performed in the tooling at temperatures up to 783°K (950 0 F). It was

observed that the 4-BDAF/PMDA and 4-BDAF/6-FDA polymers exhibited a

tendency to become somewhat tacky in the temperature range of 700°K to

755°K (800°F to 900°F) in the absence of pressure. A charring type of

decomposition was observed above 755°K. The 2-C1-4-BDAF/PMDA and

2-C1-4-BDAF/6-FDA candidates developed only a slight degree of tack up to

755°K. On heating from 644°K to 755°K, each polyimide candidate was

observed to emit volatile matter up to approximately 700°K (850°F), which

is a common occur'r'ence with linear condensation polyimides indicative of

further polymerization at these extremely high temperatures.

41
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These measurements and observations strongly suggest that the molding

process investigation should employ the following conditions:

• "Bump" the molding powder frequently until a temperature of

700 0 K is attained

• Apply pressure once the resin powder has reached a temperature
of 700°K

Subsequent screening of molding cycles determined that frequent bumping

up to 700°K is required. Molding cycles which employed little or no

bumping consistently yielded highly voided specimens. Application of

pressure at temperatures below 700°K likewise yielded voidy molded

products.

Screening studies were also conducted to assess the effect of the

initial temperature at which the mold was charged with powder. The tooling

heat-up rate was held constant at approximately 1.5°C (2 0 F)/minute up to

689°K to 700°K which was the maximum rate obtainable with the Ogden

barrel heater described in Section 4.2.1. It was determined that the 	 g

temperature at which the mold was charged was not a significant factor in

the process. A temperature of 561°K (550°F) was subsequently selected to

charge the mold. This temperature minimized personnel safety risk when

protective equipment was worn and held the tooling heat-up time required

to approximately 60 minutes.

Molding pressures were screened over the range 13.6 MPa (2000 psia)

to 68 MPa (10,000 psia), employing temperatures in the range of 700°K

(800°F) to 755°K (900 0 F). It was determined that a pressure of 40.8 MPa

(6000 psia) was required to give essentially zero defect molded discs

x	 possessing a maximum specific gravity of 1.45.

The results of the compression molding screening study were employed	 j

to define a promising and reproducible molding cycle for the 4-BDAF/PMDA

polyimide. This molding cycle is summarized in Table 10. These process

f	 ing conditions were employed to reproducibly produce very low defect

-^"	 content discs with a diameter of ?.54-cm (1-inch) and a thickness of up 	 j

to 0.64-cm (0.25-inch). The discs consistently possessed a specific

gravity in the range of 1.42 to 1.45. Photomicrographs of a representative,

sectioned disc are presented in Figures 12 and 13.
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Figure 12. 4X Photomicrograph of Sectioned Polyimide Disc.

Figure 13. 50X Photomicrograph of Sectioned Polyimide Disc.
1
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TABLE 10

SUMMARY OF THE REPRODUCIBLE MOLDING CYCLE
DEFINED FOR NEAT RESIN FORMULATION 4-RDAF/PMDA

i
4

Time at Temperature	 Bumping Cycles Performed	 Mold Tempera ure

	

(minutes)	 [0 to 40.8 MPa (6000 psi)] 	 (°K/°F)a

0 to 30	 8	 5570K/544°F to
607°K/633°F

31 to 60	 9	 607°K/633°F to
658°K/725°F

	

61 to 100	 8	 658°K/725°F to
6890K/780°F

	

101 to 120	 0b)	 6890K/780°F to
7250K/846°F

	

121 to 150	 0b)	 7250K/846°F to
7290K/853°F

	

151 to 270	 0c)	 7291K/8530F to
453°K/356°F

a) Average of three thermocouple measurements.

b) Pressure was applied constantly at 408 MPa.

) Pressure was released at the end of this cooldown cycle

The same process given in Table 10 was successfully employed to com-

pression mold essentially zero defect 2.54-cm x 0.64-cm neat resin discs

,from the new 4-BDAF/6-FDA polyimide candidate. The specific gravities

measured on this polyimide ranged from 1.47 to 1.47.

Attempts to compression mold the new 2-C1-4-BDAF/PMDA and 2-C1-4-BDAF/

6-FDA polyimide candidates by the process given in Table 10 were not

successful. Varying the temperatures from 662°K (~SJ°F) -to 755°K (900°F)

and pressures up to 68 MPa (10,000 psia) likewise -did not yield consolidated

specimens. Examination of the easily breakable discs obtained gave evidence

44
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that very little melt-like consolidation had occurred during the molding

attempts. At molding temperatures greater than 755°K, these resins

appeared to char in a like manner to the 4-BDAF/PMDA and 4-BDAF/6-FDA

candidates. On the basis of this molding process screening, the polyi-

mide candidates prepared from the new 2-C1-4-BDAF diamine do not appear

to be promising matrix resin candidates for 644°K service,

The compression molding process defined for the 4-BDAF/PMDA and

4-BDAF/6-FDA polyimides was successfully employed to prepare larger

diameter discs for the oxidative aging studies.

4
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5.0 NEAT RESIN THERMO-OXIDATIVE STABILITY

This section describes the work conducted to compression mold test

specimens, determine promising postcure cycles giving high glass transition

temperatures and isothermal aging of candidate polyimide moldings at 616°K

(650°F) and 644°K (700°F) under compressed air temperatures of up to 0.4

MPa (60 psia) for durations up to 200 hours.

5.1	 COMPRESSION MOLDING OF POLYIMIDE TEST SPECIMENS

The neat resin powder preparation process described in Section 4.1 and

the compression molding process summarized in Table 10 were employed to v
fabricate 4-BDAF/6-FDA and 4-BDAF/PMDA polyimide discs in sufficient quan-

tities to perform subsequent postcure, glass transition termperature and

oxidative aging experimentation. This fabrication work involved molding of

'r	 significantly larger neat polyimide discs than those prepared in the

processing studies.

A Carver mold suitable for compression molding polyimide discs possess-

ing a diameter of 6.34-cm (2.5-inches) was used. The tool was the same

three piece design as that shown in Figure 9 in the previous section. This 	 3t

mold size was selected to accommodate the molding pressure capability of the

press shown in Figure 9. As before, an Ogden barrel extrusion band heater,

fitted with three thermocouple leads, was employed to heat the Carver mold

to a tolerance of ± 2°C (±5°F).

The 6.34-cm diameter polyimide discs were molded into thicknesses

from 0.25-cm (0.1-inch) up to 0.63-cm (0.25-inch)• The discs were sectioned

into four equal parts to assess the quality of each specimen in terms of	 i

the presence of microcracks or voids. Essentially zero defect moldings

were obtained for each polyimide candidate in an .average of 60/ of the 	 i

.	
fabrication attempts. Polyimide specific gravities continued to average

1.42 or greater.

The polyimide discs that were judged to be acceptable were employed

for resin postcure/glass transition temperature experimentation and	 j

subsequent isothermal oxidation studies.
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5.2 POSTCURE STUDIES AND GLASS TRANSITION TEMPERATURE DETERMINATIONS

The 4-ADAF/6-FDA and 4-BDAF/PMDA compression molded polyimide specimens

demonstrating very low defects and acceptable specific gravities were

subjected to postcure to attempt to obtain a desired glass transition

temperature of greater than 644°K (700 0F). The postcure studies were

structured from prior TRW studies conducted on 4-BDAF/PMDA.

Prior work conducted at TRW showed that a postcure for 4-BDAF/PMDA

polyimide of up to twenty-four hours at temperatures in the range of 644°K

(700°F) to 672°K (750°F) in air was sufficient to yield neat resin glass

transition temperatures (Tg) of greater than 644°K. The Tg measurements

were performed by a Du Pont Model 990 thermalmechanical analysis (TMA)

instrument operating in an expansion mode. In the prior work, no a

attempt was made to achieve a Tg greater than 644°K while holding weight

loss on postcure to one percent or less.

In this program, minimum postcure conditions in air were investigated
F

for the 4-BDAF/PMDA polyimide that would yield the desired Tg of greater

than 644°K and confine weight loss to a maximum of approximately one

percent. It was determined that postcure conditions consisting of sixteen 	 j

hours in air at 644°K gave an acceptable Tg by TMA analysis of 658°K (335°C
0

or 725 0 F). Neat resin weight loss under these conditions was confined to

0.9%, which is deemed to be an acceptable level. A representative TMA

scam for 4-BDAF/PMDA is presented in Figure 12.

Similar postcure conditions were performed on the 4-BDAF/6-FDA polyimide 	 i

candidate. However, postcure conditions, based upon the 4-BDAF/PMDA work, 	 I

could not be established that yield a Tg by TMA analysis greater than

577°K (304°C or 580 0F). A representative TMA scan for 4-BDAF/6-FDA is pre-

sented in Figure 13. Program schedule requirements did not allow an exhaus-

tive matrix of postcure conditions to be investigated for this polyimide can-

didate. However, it is held to be unlikely that a neat resin Tg approaching

the desired 644°K or greater can be achieved for the 4-BDAF/6-FDA polyimide. 	 i

This speculation is based upon work conducted at General Electric (Reference

1) on DuPont NR-150B polyimides which are based on the 6-FDA dianhydride
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(Reference 2). The General Electric investigation showed that a postcure

employing conditions of twenty-four hours or less at 630°K (357°C or 625°F)

was sufficient to give a Tg of up to 633°K (360°C or 680 0 F). These

General Electric results strongly suggest that linear condensation poly-

imides prepared from the 6-FDA dianhydride, such as NR-1506 resins and

the 4-BDAF/6-FDA candidate, attain a high or near-maximum Tg rapidly at

high temperatures.

Although the experiroental data base is limited, the lower than

anticipated Tg obtained for 4-BDAF/6-FDA may infer a basic phenomena is

operating in the Tg property to be expected in linear condensation poly-

imides. This phenomena may be described as an odd-even effect in total

aromatic rings in the polymer backbone repeat segment. Evidence now

exists that this behavior particularly manifests itself when a four ring

diamine, such as 4-BDAF, is employed as a reactant. As stated previously

in this report, linear condensation polyimide-0 prepared from 3,31,4,41-

benzophenone tetracarboxylic acid dianhydride (BTDA-this monomer, like

6-FDA, also contains two aromatic rings) and 4-BDAF diamine also possess

an expectedly low Tg of 580°K (307°C or 585 0 F), Thus, 4-BDAF/6-FDA and

4-BDAF/BTDA, which both contain an even number of six aromatic rings in

the polyimide backbone repeat unit, possess a Tg of less than 589°K (316°C

or 600 0 F). In contrast, 4-BDAF/PMDA, which contains an odd number of five

aromatic rings in the polyimide repeat segment, repeatedly has been

determined to possess a Tg that is significantly higher, such as the 685°K

(385°C or 725°F) temperature discussed previously.

The preliminary data suggesting that a significant odd-even aromatic

ring effect on expected Tg is operational in polyimides prepared from

4-BDAF is recommended for future study. Polyimides prepared from dian

hydrides other than PMDA (or dianhydrides containing three aromatic rings

in the backbone) may possess a combination of higher oxidative stability

and Tg than those determined for 4-BDAF/PMDA. It is felt that both

superior weight retention at 644°K and a Tg greater than 644°K is required

for an outstanding structural matrix resin for long-term service in air

at 644°K.

Regardless of the relative importance of Tg, both the 4-BDAF/6-FDA

and 4-BDAF/PMDA po'lyimides displayed initial promise for up to 200 hour

9,
a

s

t
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service at 644°K in extreme oxidative environments up to compressed air

pressures of 0.4 MPa (60 psia).

5.3 THERMO-OXIDATIVE STABILITY INVESTIGATION

The compression molded specimens of polyimide candidates 4-BDAF/6-FDA

and 4-BDAF/PMDA were subjected to isothermal aging studies in air at 644°K

(700°F) at ambient and 0.4 MPa (60 psia) air pressures for up to 200 hours.

5.3.1 Iso thermal Aging at 644°K at Ambient Air Pressure

The two polyimide candidates were isothermally aged in ambient pressure

air at 644°K (700°F) for 200 hours. Each polyimide candidate displayed
4

very promising oxidative stability under these severe conditions.

A maximum weight loss average of 9.5% occurred for the 4-BDAF/PMDA

after the 200 hour aging period. The 4-BDAF/6-FDA candidate showed a

maximum average weight loss of 15.0% after the 200 hour aging point. These

data and intermediate duration weight losses are presented in Table 11,

5.3.2 Isothermal Aging at 644°K at 0.4 MPa Air Pressure

The two polyimide candidates were isothermally aged in 0.4 MPa

(60 psia) pressure at 644°K (700°F) for one hundred hours. An average

weight loss of 27.5% was obtained for the 4-BDAF/PMDA polyimide and 21.1%

for the 4-BDAF/6-FDA polyimide. These results are summarized in Table 11.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations are presented below as derived

ap	 from this program to investigate improved high temperature resistant

matrix resins suitable for service at 644°K (700°F) in extreme oxidative

environments of up to 0.4 MPa (60 psia) compressed air pressures.

6,1	 CONCLUSIONS

This experimental investigation to identify, synthesize, fabricate

and evaluate high temperature matrix resins for 644°K (700°F) service has

yielded technical evidence from which the following conclusions are

derived:

• Linear condensation polyimides which contain a perfluoroiso-
propyiidene linkage in the polymer backbone have shown
promising stability at , 1 44°K (700°F) in extreme oxidative
evnironments.

• Linear condensation polyimides prepared from 2,2-bis[4-(4-
aminophenoxy)phenyl]hexafluoropropane (4-BDAF diamine) show
promise for application in matrix resins for 644°K service
in highly oxidative environments.

9 The number of aromatic rings in the dianhydride employed in
combination with 4 -BDAF diamine appears to have a significant
effect on the glass transition temperature obtained
on specific ingredient combinations.

6.2 RECOMMENDATIONS

Based upon the experimental work performed on neat polyimide

polymers on this program, the following recommendations are offered:

• The effect of fibrous reinforcement on resin dimensional
and oxidative stability and thermo-mechanical properties
should be investigated.

• The effect of anti-oxidants and resin surface treatments such
as ion implanted surface coatings on 644°K (700°F) oxidative
stability should be investigated.
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• The effect of alternative polyimide polymerization routes and
solvents on resin performance at 644°K should be investigated.

• The oxidatively and thermally susceptible linkages in the
polymer should be identified and modifications made, where
appropriate, to improve polymer performance at 644 °K.

• The effect of alternative aromatic dianhydrides to pyromellitic
(PMDA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane
(6-FDA) in combination with 4-BDAF diamine should be
investigated.

k
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8.0 APPENDICES

This section presents representative experimental procedures employed

to synthesize monomers and polymers on this program as discussed in Section

3. Also included are additional characterization spectra which were not

shown in Section 3.

S.A. DIAMINE SYNTHESES

The experimental procedures employed to prepare 2-C1-4-BDAF and 4-BPDA

diamines are presented below.

Representative DSC, NMR and IR spectra for 2-C1-4-BDAF diamine are

presented as Figures 8.A.1, 8.A.2 and 8.A.3, respectively.

8.A.1 Preparation of 2,2-Bis[(2-chloro-4-amino henox ) hen 1]hexafluoro-
pro pane 2-C1-4-BDA7F

8.A.1.1 Synthesis of 2,2-Bis[2-chloro-4-nitrophenoxy)phenyl]hexafluoro
propane (2-C1-4BDNF).

In a 1000 mL 3-necked round bottom flask equipped with a magnetic

stirring bar, Dean-Stark trap, condensor, heating mantle, and gas inlet

adapter, was placed Bis-Phenol AF (112 g, 333 mmol) and sodium hydroxide

(26.8 g, 670 mg-at) in dry N, N-dimethylacetamide (DMAc, distilled from

calcium hydride, 500 mL) under argon atmosphere. The mixture was stirred

and brought to reflux with azeotropic removal of water. After 20 hours,

the water and toluene were removed by distillation, and the temperature of

the dark burgundy-colored reaction mixture was lowered to 110°C. The

solution of Bis-Phenol AF dianion was added hot (ca. 130-140°C) over 20-25

min to a stirred solution of 3,4-dichloronitrobenzene (128.6 g, 670 mmol)

in dry DMAC (ca. 400 mL) under argon atmosphere. The temperature of the

reaction mixture rose to 105-110°C. After addition was complete, the

stirred mixture was heated at 105-120°C for 2 hours, then cooled to ambient

temperature and poured onto water (2000 mL). The yellowish-brown solid

that precipitated out was filtered, washed with ethanol, dissolved in a

minimal amount of ethyl acetate (700 mL), then treated with ethanol (200

mL), and left to recrystallize.

57

-- 
^,	 T	 6LT	 20	 INTENTIONALLY BLANK

^^ j



X58

The precipitate from above was filtered, washed once with ice-cold

ethanol, pulverized and air-dried to yield glistening beige crystals

(148 g, 229 mmol, 69% yield). Mp 160°C (DSC melting point, single peak).

Infrared: 1345 cm-1 (-NO 2 ). Elemental analysis (% actual, theoretical in

parentheses):	 C, 50.8 (50.1); H, 2.4 (2.2); n, 5.4(4.3), 0, 14.8(14.8'-; Cl,

10.5(11.0); F, 17.7(17.6).

8.A.1.2 Synthesis of 2,2-Bis[(2-chloro-4-amino henox ) hen 1]hexafluoro-
vrovane 2-C1-4-BDAF .

The 2-C1-4-BDNF (23.48 g, 364 mmol) was dissolved in ethyl acetate

(350 ml). 5% Palladium on carbon (Alfa, 1.45 g, equivalent of 0.7 mmol Pd,

1.9 mol %) was added, and the mixture treated with hydrogen in a Parr

reactor. Theoretical uptake of hydrogen was observed within 4-8 hours.

The mixture was filtered, and the supernatant concentrated to yield a beige-

colored solid (21.4 g, 100% crude yield), homogeneous by tic, m.p. 201°C

(Fisher-Johns, uncorrected), 200'C (endotherm in differential scanning

calorimetry). IR: 3640 cm-1 (> N-H), no trace of -NO
2
 absorption.

Elemental analysis (% actual, theoretical in parentheses): C, 56.1 (55.2);

H, 3.3 (3.1); N, 5.9 (4.8); 0, 7.8 (5.4); Cl, 11.5 (12.1); F, 18.3 (19.4).
i

Amine number (meq/g; theoretical in parentheses): 5.12 (5.43).

8.A.2 Preparation of 4,4'-(4-Aminophenoxy)biphenyl (4-BPDA).

8.A.2.1 Synthesis of 4,4'-(Nitrophenoxy)biphenyl (4-BPDN).

In a 1-liter 3-necked round-bottom flask equipped with magnetic stirr-

ing bar, condensor, Dean-Stark trap, thermometer, and gas inlet adapter was

placed p,p-biphenol (Buffalo Color Corporation, 37.2 g, 200 mmol) and	 j

sodium hydroxide 16y	 (	 g, 400 mmol) in dry N,N-dimethylacetamide (DMAc,

distilled from barium oxide, 250 W under argon atmosphere. The stirred

mixture was brought to reflux with azeotropic removal of water. After 21

hours, the water and solvent were removed by distillation, and the white

suspension of the salt was kept at 135-14°C. Then, under vigorous stir,

4-chloronitrobenzene (63.4 g, 400 mmol) was added portionwise rather 	 j

quickly (5-7 min). The mixture became reddish, foamy, and exothermic during

addition. Temperature was maintained at 155°C by rate of addition. After

the addition was complete and the exotherm had subsided, the stirred

Y.
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mixture was maintained at 150°C for 3 days, then cooled to room temperature

and poured onto water (1200 mL). The precipitated yellow solid was fil-

tered off, washed well with ice-cold ethanol, and air-dried (80.8 g, 94.4%

crude yield). It was homogeneous by analytical thin-layer chromatography

(silica gel, 60:40 hexanes: benzene, R  = 0.092). M.p. 193 . 195°C (Fisher-

y Johns, uncorrected); , 195°C (somewhat broad endotherm, differential scanning

-calorimetry). IR: 1330, 1340 cm -1 (-NO 2 ). Elemental analysis (/, actual;

theoretical in parentheses): C, 68.8 (67.3); H, 4.2 (3.7); N, 6.4 (6.6); 0,

22.2 (22.4).

8.A.2.2 Synthesis of 4,4 1 -(4-Aminophenoxy)biphenyl (4-RPDA).

The crude 4-BPDN (21.5 g, 50 mmol) was suspended in dimethylformamide

(200 W along with 5% palladium on carbon (Alfa, 1.0 g, 1 mol % Pd). The

suspension was treated with hydrogen in the Parr reactor. Theoretical uptake

of hydrogen was observed in 3 hours. The mixture was filtered, and the

f	 supernatant was concentrated in vacuo at elevated temperature to yield a

gray solid. The solid was pulverized, washed well with ice cold ethanol,
and air dried to yield 17.4 g of material (47.3 mmol, 94.2% yield). M.p. 	 5
200-201°C (Fisher-Johns, uncorrected), IR: 3380 cm -1 (> N-H; no -NO2	j

band present). Elemental analysis (% actual, theoretical in parentheses):

C, 78,1(78.3); H,5.7(5.4); N, 7.5(7.6); 0. 9.8(8.7). Amine number (meq/g,

j	 theoretical in parentheses): 3.32(3.41).

8.B POLYIMIDE SYNTHESIS

A representative synthesis procedure employed to prepare 2-C1-4-BDAF/

PMDA is given below.

8.B.1 Synthesis of 2-C1-4-BDAF/PMDA Resin:

	

In a flame-dried 100-m1 4-necked resin kettle equipped with overhead	 i

stirrer and gas inlet adapter was dissolved 2-C1-4-BDAF (10.0g, 17 mmol) in

distilled dimethylacetamide (41 g) under argon atmosphere. Then PMDA (3.71

g, 17 mmol) was added portionwise over ca. 7 minutes (25% w/w solids con-—.	
i

tent). After all the PMDA was added, themixture became somewhat warm and

viscous. The mild exotherm subsided after ca. 30 minutes, and the viscous

	

amber-colored solution was stirred for 2 more hours, then decanted into a 	 `•

container.
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8.B.2 Imidization and Postcure of 2-C1-4-BDAF/PMOA:

A several-gram sample of the 25% w/w solution of 2-C1-4-BDAF/PMDA in ri

DMAC was placed in an aluminum dish (6 cm diameter x 2.6 cm height) and

put in a vacuum oven. Heating and partial vacuum was applied to remove

solvent, then increased to 200% and < 1 mm Hg for 3 hours to effect

imidization,

The imidized resin sample was then postcured in an air-circulating

oven at 400°C for 4 hours to yield a reddish-brown, tough, flexible film.

Representative GPC tracings for the polyimide candidates investigated

in this program are presented in Figures 8.B.1 through 8.B.6.
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