91 research outputs found

    Development of a position-sensitive detector for positronium inertial sensing measurements

    Get PDF
    In the last twenty years, both free fall and interferometry/deflectometry experiments have been proposed for the measurement of the gravitational acceleration on positronium, which is a purely leptonic matter-antimatter atom formed by an electron and its antiparticle (positron). Among the several challenges posed by these experiments is the development of position-sensitive detectors to measure the deflection of positronium in the Earth's gravitational field. In this work, we describe our recent progress in the development of position-sensitive detectors. Two different detection schemes are considered. The first is based on Ps ionization in a strong homogeneous magnetic field and imaging of the freed positron with a microchannel plate. The second scheme is based on scanning the positronium atom distribution on a plane by moving the slit or a material grating with sub-nm accuracy, and counting the atoms crossing the obstacle and those annihilating on it. The possibility of reaching a spatial resolution of around 15 μm using the former detection scheme is shown, and preliminary steps towards the development of a detector following the latter scheme (with potential position sensitivity in the sub-nm range) are described

    Multi-dimensional assessment and scoring system for dairy farms

    Get PDF
    The aim of the study is to develop a scoring system for dairy farms in order to give specific information about the product and production process of milk. The scoring system, based on a multi-dimensional approach, was developed on the basis of data collected in 29 Italian dairy farms and included different aspects. For the evaluation of animal welfare, a selection of indicators set up in the European ProjectVR assessment protocol for cattle 2009 was used. Environmental sustainability of milk production was assessed by a cradle-to-farm-gate Life Cycle Assessment. Laboratory analyses were carried out on bulk tank milk to evaluate microbiological, nutritional and nutraceutical quality. Nineteen variables were selected and retained to define six quality aspects: animal welfare, environmental and economic sustainability of farms, microbiological, nutritional and nutraceutical quality of milk. Each farm was visited twice; each visit received, for each variable, a score between 1 and 3 based on the frequency distribution of that variable in the farm sample. The relation among farm characteristics and quality aspects showed the importance to maximise dairy efficiency to improve environmental and economic sustainability of the farms and the inclusion of hay in dairy cows\u2019 ration to enhance the nutraceutical and nutritional quality of milk. The proposed multi-dimensional scoring system is a practical tool: for the farmer, to support decisions for improving the quality of the product and the productive process; for the dairy company, as a value-added opportunity; for the consumer, who receives detailed information about nutritional characteristics and production system of dairy products

    High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics

    Get PDF
    We present a hybrid imaging/timing detector for force sensitive inertial measurements designed for measurements on positronium, the metastable bound state of an electron and a positron, but also suitable for applications involving other low intensity, low energy beams of neutral (antimatter)-atoms, such as antihydrogen. The performance of the prototype detector was evaluated with a tunable low energy positron beam, resulting in a spatial resolution of approximate t

    Control system for ion Penning traps at the AEgIS experiment at CERN

    Get PDF
    The AEgIS experiment located at the Antiproton Decelerator at CERN aims to measure the gravitational fall of a cold antihydrogen pulsed beam. The precise observation of the antiatoms in the Earth gravitational field requires a controlled production and manipulation of antihydrogen. The neutral antimatter is obtained via a charge exchange reaction between a cold plasma of antiprotons from ELENA decelerator and a pulse of Rydberg positronium atoms. The current custom electronics designed to operate the 5 and 1 T Penning traps are going to be replaced by a control system based on the ARTIQ & Sinara open hardware and software ecosystem. This solution is present in many atomic, molecular and optical physics experiments and devices such as quantum computers. We report the status of the implementation as well as the main features of the new control system

    Feasibility studies for imaging e+^{+}e^{-} annihilation with modular multi-strip detectors

    Full text link
    Studies based on imaging the annihilation of the electron (e^{-}) and its antiparticle positron (e+^{+}) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of e+^{+}e^{-} into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e+^{+} beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging e+^{+}e^{-} annihilations and thus their applicability for gravitational studies of Ps

    Development of a detector for inertial sensing of positronium at AEgIS (CERN)

    Get PDF
    The primary goal of the AEgIS collaboration at CERN is to measure the gravitational acceleration on neutral antimatter. Positronium (Ps), the bound state of an electron and a positron, is a suitable candidate for a force-sensitive inertial measurement by means of deflectometry/interferometry. In order to conduct such an experiment, the impact position and time of arrival of Ps atoms at the detector must be detected simultaneously. The detection of a low-velocity Ps beam with a spatial resolution of (88 ± 5) μm was previously demonstrated [1]. Based on the methodology employed in [1] and [2], a hybrid imaging/timing detector with increased spatial resolution of about 10 μm was developed. The performance of a prototype was tested with a positron beam. The concept of the detector and first results are presented

    Positronium laser cooling via the 13S1^3S-23P2^3P transition with a broadband laser pulse

    Full text link
    We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the 13S1^3S-23P2^3P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived 33P3^3P states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.Comment: 6 pages, 5 figure

    Protocol for pulsed antihydrogen production in the AEḡIS apparatus

    Get PDF
    The AEḡIS collaboration’s main goal is to measure the acceleration of antihydrogen (H¯) due to gravity. The experimental scheme is to form a pulsed beam whose vertical deflection is then measured by means of a moiré deflectometer [1]. Creating pulsed H¯ is crucial since it allows a velocity measurement of the antiatoms via time of flight (ToF) necessary to deduce the gravitational acceleration ḡ from the vertical deflection Δs. The aim of this article is to outline the experimental protocol leading up to pulsed antihydrogen production in the AEḡIS experiment

    Positronium Laser Cooling via the 1 3 S − 2 3 P Transition with a Broadband Laser Pulse

    Get PDF
    We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived 2^{3}P states. The second effect is one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) to 170(20) K. We demonstrate a 58(9)% increase in the fraction of Ps atoms with v_{1D}<3.7×10^{4}  ms^{-1}

    CIRCUS: an autonomous control system for antimatter, atomic and quantum physics experiments

    Get PDF
    AbstractA powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEḡIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN’s Antiproton Decelerator and, more broadly, in atomic and quantum physics research. Its setup is based on Sinara/ARTIQ and TALOS, integrating the ALPACA analysis pipeline, the last two developed entirely in AEḡIS. It is suitable for strict synchronicity requirements and repeatable, automated operation of experiments, culminating in autonomous parameter optimisation via feedback from real-time data analysis. CIRCUS has been successfully deployed and tested in AEḡIS; being experiment-agnostic and released open-source, other experiments can leverage its capabilities.</jats:p
    corecore