22 research outputs found

    Multifunctional poly[N-(2-hydroxypropyl)methacrylamide] copolymers via postpolymerization modification and sequential thiol–ene chemistry

    Get PDF
    Poly[N-(2-hydroxypropyl)methacrylamide] is a promising candidate material for biomedical applications. However, synthesis of functional pHPMA via compolymerization results can lead to variations in monomer composition, molar mass, and dispersity making comparison difficult. Postpolymerization modification routes, most commonly aminolysis of poly[active ester methacrylates], have alleviated some of these problems, but ester hydrolysis can lead to other problems. Here we report the synthesis of multifunctional pHPMA via a simple two-step derivatization of pHPMA homopolymer using readily available standard reagents and atom-efficient procedures. First, treatment with allyl isocyanate yields the corresponding carbamate with predictable incorporation of side-chain functionality. Allyl-pHPMA can then be derivatized further via radical thiol–ene reactions to generate pHPMA with multiple diverse functionalities but without adverse effects on the molecular weight and dispersity of the polymer. The applicability of the method to production of biologically relevant materials is demonstrated by cytocompatibility and cell labeling experiments with easily prepared ligand-functionalized pHPMA in the HCT 116 model cell line

    Role of catechol in the radical reduction of B-alkylcatecholboranes in presence of methanol

    No full text
    Mechanistic investigations on the previously reported reduction of B-alkylcatecholboranes in the presence of methanol led to the disclosure of a new mechanism involving catechol as a reducing agent. More than just revising the mechanism of this reaction, we disclose here the surprising role of catechol, a chain breaking antioxidant, which becomes a source of hydrogen atoms in an efficient radical chain proces
    corecore