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Obligatory and facilitative allelic variation in the
DNA methylome within common disease-
associated loci
Christopher G. Bell 1,2,3,4, Fei Gao5, Wei Yuan1,6, Leonie Roos 1,7, Richard J. Acton 2,3,4, Yudong Xia5,

Jordana Bell1, Kirsten Ward1, Massimo Mangino 1, Pirro G. Hysi 1, Jun Wang2 & Timothy D. Spector1

Integrating epigenetic data with genome-wide association study (GWAS) results can reveal

disease mechanisms. The genome sequence itself also shapes the epigenome, with CpG

density and transcription factor binding sites (TFBSs) strongly encoding the DNA methylome.

Therefore, genetic polymorphism impacts on the observed epigenome. Furthermore, large

genetic variants alter epigenetic signal dosage. Here, we identify DNA methylation variability

between GWAS-SNP risk and non-risk haplotypes. In three subsets comprising 3128 MeDIP-

seq peripheral-blood DNA methylomes, we find 7173 consistent and functionally enriched

Differentially Methylated Regions. 36.8% can be attributed to common non-SNP

genetic variants. CpG-SNPs, as well as facilitative TFBS-motifs, are also enriched. High-

lighting their functional potential, CpG-SNPs strongly associate with allele-specific DNase-I

hypersensitivity sites. Our results demonstrate strong DNA methylation allelic differences

driven by obligatory or facilitative genetic effects, with potential direct or regional disease-

related repercussions. These allelic variations require disentangling from pure tissue-specific

modifications, may influence array studies, and imply underestimated population variability in

current reference epigenomes.
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The hunt for disease-implicated genetic sequences is a major
focus of medical research because it may reveal precise
molecular insights into disease pathophysiology. Genome-

wide association studies (GWAS) have successfully identified
thousands of common genetic loci associated with human dis-
eases and phenotypes1. However, linkage disequilibrium (LD)
between variants, incomplete coverage and gaps in their func-
tional annotations make it difficult to establish a firm causal and
functional mechanism between the statistically identified variants
and the phenotypes they associate with. Integration with disease-
relevant and tissue-specific functional indicators or epigenetic
marks within these regions, such as DNase I hypersensitivity sites
(DHSs)2, histone modifications3, 4 and DNA methylation varia-
tion5, 6, can highlight candidate active variants. This dissection of
GWAS signals enables progress from associated SNP to
mechanistic understanding7, 8.

Epigenetic variation in relation to genome sequence falls into
three main categories: ‘pure’ if under no genetic influence,
‘facilitated’ when genetic polymorphism enable variability and
‘obligatory’, if sequence variants directly predict the epigenetic
state9. Thus, defining how epigenomes vary with respect to
genetic influence and the mechanistic role this plays over phe-
notypic expression can greatly increase understanding of genetic
regulation in heath and in disease. Genetic influences on the
epigenome, such as enhancer variation, are strong enough to be
observed in only 19 diverse ancestry individuals10.

Here we report an analysis of the relationship between allelic
dosage of genetic risk SNPs that have previously been

significantly and reliably associated with human phenotypic
variation (via the NHGRI-EBI GWAS Catalogue1) and DNA
methylation within the LD block harbouring it. These GWAS
regions are not only robustly associated with human traits but are
also known to be enriched for functionality7, 11. We used
genome-wide methylation-dependent immunoprecipitation
second-generation sequencing (MeDIP-seq) data derived from
peripheral blood and high-quality SNP array genotype data from
3128 samples of European ancestry. Therefore, we broadly cap-
ture DNA methylation differences between risk and non-risk
GWAS haplotypes, or haplotype-specific DNA methylation
(HSM) variation12. The underlying strong extent of genetic
influences on the epigenome is increasingly acknowledged13. CpG
density is fundamental in defining the background DNA
methylome, along with cell-specific usage of available binding
sequences for transcription factors14. Common population var-
iation in CpGs is significant via SNPs within this dinucleotide
(CpG-SNPs) as well as larger variants. Recent base-resolution
data has further supported that regional epigenetic effects exist
within the DNA methylome15. We took advantage of the fact that
this immunoprecipitation-derived signal is strongly influenced by
the number of methylated cytosines in the DNA fragment16 to
capture these regional allelic variation effects, and can be con-
sidered more akin to ChIP-seq than base-resolution analyses.
This leads to a distinct signal of population variation in both
facilitated and obligatory genetic effects on the DNA methylome.
Allelic variations in genetic dosage effects on this DNA methy-
lation score are allelic signal differences not epigenetic variability.
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However, these may as well contribute to regional or neigh-
bouring allelic epigenetic variation, with effects on traits, or even
bias other analytical measures, including bisulphite arrays and
sequencing.

In this study we identify robust alleic variation in DNA
methylation signal within disease-related loci. This is contributed
to, but not fully accounted for, by non-SNP variants. We show that
these demarcated regions are, in fact, functionally enriched. Fur-
thermore, CpG-SNP variation is important in this, through not
only its fascilitative influence on signal, but also its impact on
allele-specific DHS. This survey increases our understanding of
common epigenomic variation, the extent of inter-individual
genetic variation’s influence on the epigenome, and its potential
relevance with regard to genetic common disease-related variation.

Results
DNA methylation variation by GWAS SNP risk carrier status.
We investigated 8093 GWAS phenotype-associated results (p<
1 × 10−7) listed in the NHGRI-EBI GWAS catalogue1. Due to
some SNPs being associated with more than one trait, this
amounted to 5474 unique SNP by GWAS LD block analyses. In
addition, because of GWAS results co-locating in the same LD
block, this reduced to a total of 2709 blocks, which cover 22.1% of
the entire length of the genome.

The total peripheral blood DNA methylome samples were split
into three separate data sets (Fig. 1 and ‘Methods’). The first was
the discovery analysis set (1DISC) which included 895 unrelated
individuals. The second, follow-up data set (2FOLL, N= 1343)
included 1343 siblings and additional time-point (longitudinal)
samples from the individuals of 1DISC. The replication data set
(3REPL) comprised 890 additional individuals, unrelated to any
of the previous two sets. To identify differentially methylated
regions (DMRs) between risk and non-risk GWAS haplotypes,
the haplotype-specific DNA methylation (HSM) peak analysis
assessed the linear relationship between the allelic count of the
GWAS SNP and DNA methylation scores in 500 bp overlapping
windows across the LD block. This included adjustments for
critical covariates (Methods). Only HSM peaks retaining
significance beyond multiple testing correction (p< 1.85 × 10−8,
linear model or mixed effect model) in all three data sets and with
a consistent direction of effect are reported here.

Our analysis is similar in concept but methodologically
different to previous DNA methylation quantitative trait loci
(mQTL) analyses that identify via array data significant SNP
associations with DNA methylation13, 17, 18. We focus only on
those genetic changes already robustly associated with disease via
GWAS and, additionally, the use of MeDIP-seq data enables the
entire related LD block regions to be interrogated, not isolated
and predetermined CpGs. To identify obligatory or facilitated
genetic effects on DNA methylation that are in strong LD with
the GWAS SNP, we apply our analysis within the recombination-
defined LD blocks, were these signals strongly reside (Supple-
mentary Fig. 1). Whilst 'pure' epigenetic changes may exist
beyond these limits, our focused approach dramatically increases
our study power to find these genetically driven variations.

We identified a consensus set of 16,060 500 bp windows, which
were then merged due to overlapping and adjacent locations into
the final set of 7173 distinct HSM peaks (Supplementary Data 1).
The overlap between significant peaks identified in 1DISC with
2FOLL was 88.1% and of these 82.0% overlapped with 3REPL.
The HSM peaks in total span over ~5.86Mb with an average
genomic length of ~0.82 kb each (Supplementary Fig. 2).

HSM peaks strongly overlap with genetic variants. We subse-
quently investigated the overlap of these significant windows with

known common genetic variants: copy number variants (CNVs),
insertions and deletions (Indels) and short tandem repeats
(STRs). 36.8% of the HSM peaks overlap these non-SNP variants
or combinations of them. As would be expected there is strong
proportional enrichment for non-epigenetic dosage effects driven
by these CNVs (green), indels (blue), STRs (orange) and regions
overlapping multiple variant types (purple) compared to their
fractions both across the genome and within the GWAS LD block
regions (Fig. 2, Fisher’s exact p< 2.2 × 10−16). The total count for
overlap with the major variant classes with their p-value dis-
tributions is shown in Supplementary Fig. 3. Thus, whilst large-
scale variants, such as CNVs, do have an increased impact within
these regions, they do not account for the entire signal as 63.2%
are apportioned to the ‘Other’ category.

To further illustrate these risk haplotype-specific DNA
methylation effects we display eight examples of the 5474 GWAS
SNP by DNA methylation HSM results in Fig. 3. The total set of
graphs and results for all analysed GWAS SNPs are available for
browsing and download at http://www.epigenome.soton.ac.uk/
hsm/hsm.php.

An extremely strong methylated signal difference due to dosage
effects of a CNV is clearly seen in the known SNP-tagged 40 kb
and 8 kb large CNV deletions near the obesity-locus NEGR119

(green, Fig. 3a). The CYP24A1 multiple sclerosis locus20 shows an
HSM peak overlapping a common indel (blue, Fig. 3c), the NTN4
breast cancer locus21 with an STR (orange, Fig. 3d) and the
GNG11 locus associated with heart rate22 with a CNV (green,
Fig. 3e). A partial STR overlap can also be seen with the MX2
melanoma locus23 (orange, Fig. 3h). However, the SNP rs3802842
associated with colorectal cancer (Fig. 3b)24, as well as the ABCA7
Alzheimer’s disease25 (Fig. 3f) and the TNFAIP3 rheumatoid
arthritis26 (Fig. 3g) loci, all possess strong signals that are not
attributed to known CNV, Indel or STR co-localisations. The
peak window differences in DNA methylation according to
genotype of the GWAS SNP for these regions are shown in Fig. 4.
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Fig. 3 HSM peaks within selected GWAS LD block regions. The y-axis denotes the -log10(p value) of the differential DNA methylation according to the
genotypic status for the index (GWAS associated) SNP and the x-axis is the genomic position (in base-pairs) along the LD block. The HSM peaks are
coloured in accordance with the class of polymorphisms they overlap with, i.e. copy number variant (CNV, Green), short tandem repeats (STR, Orange),
expression-associated short tandem repeats (e-STR, Fawn), insertion–deletions (Indels, Blue), multiple variant overlaps (Purple) and other category (Red).
a NEGR1 obesity locus; b intergenic colorectal cancer; c CYP24A1multiple sclerosis; d NTN4 breast cancer; e GNG11 heart rate; f ABCA7 Alzheimer’s disease;
g TNFAIP3 rheumatoid arthritis and h MX2 melanoma. Underneath is the UCSC browser track for location with RefSeq genes, GWAS catalogue SNPs,
DNase-I hypersensitivity clusters and combined chromatin segmentation tracks. The segmentation tracks are in standard colours (Red: Promoter; Light
Red: Promoter Flanking; Orange: Enhancer; Yellow: Weak Enhancer; Blue: CTCF element; Dark Green: Transcribed Region; Grey: Repressed/Low Activity)
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Furthermore, using a combined analysis for all 3128 samples
together for DNA methylation versus only GWAS allelic count,
without other covariates, clearly mimics the initial discovery set
result, but with more power (Supplementary Fig. 4). This starkly
displays how strong this over-riding genetic effect is on this
analysis technique. The complete combined result had consistent
overlap with the HSM peak set (7163 of the 7173; 99.9%). These

strongly genetically associated DNA methylation changes may
suggest potential pathophysiological mechanisms differentiating
risk and non-risk GWAS haplotypes, if not already known, within
these respective trait-related loci.

CpG and CpG-SNP density is increased in HSM peaks. HSM
peaks possess a higher CpG density (12.8 CpG/kb, or 2.55% of
sequence is CpG dinucleotides) than both the background gen-
ome (1.84%) and the GWAS LD block regions (2.15%) (Fig. 5a,
HSM peaks versus GWAS LD block regions, OR= 1.19, p< 2.2 ×
10−16). However, they are predominately not within CpG-dense
‘CpG island’ regions (see later). There is also an increased number
of SNPs within HSM peaks (6.60 SNPs/kb) compared to the
GWAS SNP LD block regions (3.91 SNPs/kb, Fisher’s exact p<
2.2 × 10−16). Due to hypermutability of methylated cytosines,
CpG-SNPs are a significant proportion of all SNPs and we cal-
culated that 32.7% of common SNPs (MAF≥ 1%) within the
GWAS LD Block Regions are CpG-SNPs. This gives a back-
ground density of 0.26% CpG-SNP sequence in these regions,
however, within HSM peaks they are found at more than twice
this density (0.57%, OR= 2.25, Fisher’s exact p< 2.2 × 10−16,
Fig. 5b).

A subset of 4482 HSM peaks, do not overlap with known CNV,
Indel or STR (included in the miscellaneous ‘Other’ category for
the purposes of our work). These are therefore expected to
contain numerous SNPs, including methylation signal influencing
CpG-SNPs27, 28. In fact, it is more than double, with 83.5% of
SNPs being CpG-SNPs within these HSM peaks compared to the
background of 40.1% in the ‘Other variant’ category windows
within the GWAS LD block (OR= 7.66, Fisher’s exact p< 2.2 ×
10−16). 92.6% of ‘Other’ HSM peaks contain a CpG-SNP with an
average of 2.26 CpG-SNPs within these CpG-SNP containing
peaks, thus indicating, as expected, that clusters of CpG-SNPs are
strong drivers of HSM signal outside other known variants
(Supplementary Fig. 5).

HSM peaks are enriched for chromatin segmentation enhan-
cers. We examined the overlap of the HSM peaks with Chromatin
segmentation data from ENCODE in six tissues4 (Fig. 6). Due to
the known functional enrichment of GWAS regions when com-
pared to genome, these HSM peaks show very strong enrichment
for all for these defined loci (Fisher’s exact all p< 1 × 10−10,
Fig. 6a, b, Supplementary Data 2).

We then compared these regions specifically against their
proportions within the GWAS LD blocks only. This was in order
to test that the HSM peaks are not depleted exceptions within the
functionally enriched GWAS regions. However, even comparing
within the GWAS LD block regions (Fig. 6c, d), they show a small
but significant enrichment for all categories, except for transcrip-
tion start sites (TSS) and Promoter loci. This includes enhancer
(Fisher’s exact p= 5.58 × 10−3), weak enhancer (Fisher’s exact p
= 6.01 × 10−4) and CTCF loci (Fisher’s exact p= 2.58 × 10−8) as
well as the large genomic regions of transcribed and repressed
regions (Fisher’s exact both p< 2.2 × 10−16). Generalised MeDIP-
seq coverage differences were compared via the proportion of
zero coverage across the differing functional units and indicated
no significant influence on our enrichment calculations (Supple-
mentary Table 1).

Overall, 748 HSM peaks (~10.4%) overlap enhancer signal
from this combined segmentation in at least one of these six
tissues, which rises to 1089 HSM peaks (~15.2%) if weak
enhancers are also included.

HSM peaks are not functionally depleted. The HSM peaks were
then overlapped with known genetic functional sets and
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compared again against both the entire genome and to the GWAS
LD block regions (Fig. 7a, b, Supplementary Data 3). Firstly, 11 of
these 16 functional categories show significant differential
enrichment within the HSM peaks (Fisher’s exact at least p<
0.05) compared to the entire genome. By contrast CpG Islands
(CGI) and vertebrate conserved regions show a significant
depletion. Whilst we expect depletion within CGI of MeDIP-seq
signal across the genome, as these regions are predominately
unmethylated, the 32 CGI in which we do find GWAS-related
DNA methylation variation are of obvious interest for those
traits. This indicates potential genetic variability within these
CGI, in LD with the GWAS SNP, which is strongly influencing
their DNA methylation state and may have canonical CGI
functional consequences. Overall, the HSM regions are, therefore,
representative of the functionally enriched GWAS LD block
regions they are derived from, including enrichment for Fan-
tom5-derived enhancers, DHSs and CTCF elements (Fig. 7a).

Then compared to the average GWAS LD block regions
themselves, the HSM regions show significant depletion in 6 of
the 16 categories, (Fig. 7b), such as CGI shores, exons and CTCF
loci. However transcripts, DHSs, all repeat classes, variably
methylated regions (VMRs29), and dynamic regions30 all remain
significantly enriched (all Fisher’s exact p< 1 × 10−4). Thus, there
is strong enrichment across both of the base-resolution data sets
used to identify regions of high DNA methylation variability, the
VMRs, (54 DNA methylomes across 21 cell/tissue types29) and
‘Dynamic’ regions (24 developmental and primary cells30). This
implies that genetic variation between samples may in fact be a
significant contributor to the identified regions of increased DNA
methylation variability within both these studies.

CpG-SNPs enriched in allelic DHSs. DNase I hypersensitivity
sites identify accessible regions of the genome and therefore act as
broad functional indicators31, 32. As above, we found increased
DHSs within HSM peaks. To further investigate the enrichment
of CpG-SNPs we also identified in the HSM peaks, we explored
SNPs that influence allele-specific DHSs. SNPs altering tran-
scription factor (TF) binding were identified in a study by
Moyerbrailean et al. by interrogating DHS footprinting data
within the binding sites of 1372 TFs across 153 tissues33. About
66% of the ~5.8 million SNPs that reside within TF motifs were
predicted to significantly modify binding. However, only 3217
SNPs demonstrated allele-specific differences in DHSs.

Interestingly, we calculate that these allele-specific DHS SNPs are
very strongly enriched for CpG-SNPs: 54.14% (1742) compared
to the genome average of ~31.1% (OR=2.62, Fisher’s exact p<
2.2 × 10−16). This further points to the potential functional
importance of CpG-SNPs that we and others have suggested
previously12, 34, 35. 15 HSM peaks (~0.21%) overlap with these
3217 SNPs identified in this study by Moyerbrailean et al., and
despite this small number, are enriched compared to the genome
(OR=2.25, Fisher’s exact p= 1.93 × 10−3). 11 of these 15 SNPs
(73.3%) are in fact CpG-SNPs, clearly fitting with their potential
to directly influence allelic methylation and impact functionally.

HSM peaks are not specifically blood tisssue enriched. To
interrogate the tissue-specific nature of our HSM peaks we
compared their overlap with the DHS ENCODE data sets pro-
duced from 125 different tissue types. Our DNA methylome data
set was derived from peripheral blood, but due to strong genetic
influence, these HSM peaks are not specifically enriched for the
blood-derived subset (22 of the 125) of DHSs (Fig. 8). In fact, a
majority, 99 of the 125 tissue types, show at least nominal sig-
nificant increase within the HSM peaks compared to genome
(79.2%, χ2p< 0.05), across a range of different tissues (Supple-
mentary Data 4). This, therefore, supports the genetic and non-
tissue-specific systemic nature of the HSM peaks identified.

Additionally, we further explored for any evidence that our
results are biased towards blood-related disorders using the 15
broad disease categories for GWAS associations classified by
Maurano et al.32. We see no evidence for HSM peaks to reside
within GWAS LD blocks of blood-specific or related diseases
above any of the other categories, either by number of HSM peaks
per GWAS LD block or size-corrected HSM peaks/kb (Supple-
mentary Fig. 6).

Facilitative transcription factor binding site enrichment. We
identified 47 enriched motifs using MEME-ChIP36 within the
HSM peak DNA sequences. These were compared against the
JASPAR Vertebrates database for enriched transcription factor
binding sites (TFBSs). Nineteen of these matched significantly
with known sequences via the TOMTOM algorithm37 (Supple-
mentary Data 5). Notably, this included the motifs for NRF1,
ZFP161 and MYCN (Supplementary Fig. 7). These were recently
identified by Domcke et al. to be methylation-sensitive TFs38,
with NRF1 also shown to significantly influence nearby gene
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expression. These HSM peaks genetically introduce or include
motifs for TFs were methylation can facilitate variability in
binding and downstream action. Therefore, they support the
potential for HSM peaks to play, not only an obligatory, but also
in some cases a facilitative epigenetic role.

HSM peaks are enriched for Alu, SVA and LTR repeat classes.
This sequencing study as opposed to array analysis is able to
obtain some preliminary indication of repetitive methylation
variation. We further investigated the identified above enrich-
ment for the SINE repeat class, which are predominately Alu
repeats. This revealed that HSM peaks were enriched for the
younger and more active AluY and AluS elements compared to
the older AluJ element. This was compared to both the genome
and GWAS LD block regions (OR 1.24 and 1.15, Fisher’s exact p
= 5.81 × 10−12 and 7.82 × 10−6, respectively). These younger

repeats still possess mobilisation ability39 and are more likely to
be significant contributors to the population variation and hap-
lotypic differences through direct and regional positional effects.
Additionally, albeit smaller numbers, the even younger hominid-
specific and Alu-containing SVA (SINE-VNTR-Alu) transposable
element shows a significant enrichment (OR 2.08 and 1.44,
Fisher’s exact p= 2.24 × 10−6 and 1.26 × 10−2, versus genome and
GWAS LD block regions, respectively, Supplementary Fig. 8).

Within the LTR repeat class, HERV-H and LTR12C categories
also show substantial overlap with our HSM peaks in comparison
to the GWAS LD block regions background (OR 4.38 and 2.71,
Fisher’s exact p< 2.2 × 10−16 and p= 7.82 × 10−11, respectively,
Supplementary Fig. 8). Both these endogenous retroviruses
(ERVs) are shown to be important in human development and
the LTR12C subfamily has shown substantial co-location with
enhancer signal that was tissue nonspecific40.
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Enrichment for allele-specific CTCF in HSM peaks. We further
explored allele-specific functional differences using an allele-
specific CTCF (AS-CTCF) data set from Ding et al.41 This study
identified common human variants acting as quantitative trait
loci (QTLs) that influenced binding in ChIP-seq CTCF data. They
found 1837 AS-CTCF binding events across the genome and 26
of these overlap HSM peaks, an extreme enrichment compared by
chance in comparison to the genome and even within GWAS LD
block regions themselves (Fig. 9, OR= 7.12 and 5.98, both Fish-
er’s exact p< 2.2 × 10−16, respectively). This result suggests that
these HSM peaks may be contributing to haplotypic variation in
CTCF binding, potentially mediating population variation in 3D
chromatin topography42. The haplotype allele-specific methyla-
tion (hap-ASM) results of Do et al. also identified a role for CTCF
variability6. Furthermore, CTCF is known to commonly bind
constitutively across many tissue types including a highly similar
binding spectrum across all three germ layers in development43,
which is consistent with the constitutive nature of the HSM
peaks. Additional gene set enrichment analyses and multiple
disease block identification are detailed in Supplementary Notes 1
and 2, with results in Supplementary Data 6 and 7, respectively.

Allelic effects on DNA methylation array analysis. Excluding
known common SNP effects on Illumina DNA methylation array
probes is part of the standard technical quality control for
epigenome-wide association study (EWAS) analysis44. This is
generally performed with arbitrary thresholds for common SNPs
located at the interrogated CpG and within 10 bp or up to 50 bp
of the probe sequence, although more nuanced approaches are
being explored45.

No allelic information is available from Illumina DNA
methylation array results as methylation values are an average
between both alleles. To investigate the potential genetic effects
that may or may not be captured, we performed a similar analysis
for possible allelic effects in GWAS LD blocks with a linear mixed
model analysis in 811 Illumina 450k array peripheral blood-

derived samples (88.9% overlap with MeDIP samples). The 450k
array contain 169,151 probes (34.8%) within the GWAS LD block
regions. After exclusion of multi-mapping probes, this reduced to
157,473 CpGs. Of these, 22,296 were nominally significant (p<
0.05) and 4192 were significant to a genome-wide Bonferroni
level (p< 1 × 10−7, linear mixed model) for GWAS risk
haplotype-capturing SNP allelic count. When common SNPs to
10 bp or 50 bp are excluded, these reduce to 21,091 and 16,878 at
nominal, and 3890 and 2904 CpGs, at Bonferroni significance,
respectively (Fig. 10a). Permutation analysis by random shuffling
of observed genotype (allelic count) clearly displays the difference
between observed and random results (Fig. 10b). 100× permuta-
tion strongly supported these findings as it identified only an
average ~4524 (range 4290–4696) cytosines at nominal and 0.32
(range 0–2) at Bonferroni significance, respectively (empirical p
< 0.01). These findings indicate the importance of mQTL and
additional detailed genetic interrogation of array results.

Discussion
We identified 7173 haplotype-specific methylation (HSM) peaks
by investigating DNA methylation data in conjunction with
robust GWAS SNPs and LD information. This analysis was
performed in currently the largest available sequencing-based
genome-wide DNA methylome data set. The identified loci are
enriched for functional regions, such as enhancers, DHSs and
allele-specific CTCF, illustrating their potential to play a patho-
genic role.

This HSM analysis powerfully benefits from the combination
of three main factors. Firstly, it focuses the analysis on func-
tionally enriched7, 11 and robustly disease-associated GWAS LD
block regions. Secondly, the MeDIP-seq data enables DNA
methylation interrogation across the entire GWAS LD regions,
not just predetermined CpGs. Array data does not provide a
representative survey of population-level DNA methylome var-
iation, its underlying genetic architecture46, and lacks the density
of coverage required for powerful DMR calling47. When DMRs
can be identified they are found to be strongly enriched for
functional elements30. Thirdly, is the considerable reduction in
the number of tests, by reducing these components to DNA
methylation 500 bp windows and a single haplotype-tagging
GWAS SNP within each LD block. Individual CpG by SNP
analyses require a punitive multiple testing correction and our
approach reduces this burden.

Our LD aware approach differs from many recent excellent
studies exploring genetic influences on the DNA methylome due
to its direct focus on known GWAS SNPs6, 18, 35, 48. Furthermore,
whilst identifying ‘pure’ epigenetic changes by removing genetic
effects has been the focus of some studies6, facilitative mechan-
isms are influential35. McClay et al. recently reported that the
majority (75%) of cis-mQTL were due to collocating CpG-
SNPs35, but only within GWAS regions were these functionally
enriched. The individual genetic gain or loss of a CpG can impact
upon dependent TF binding activity38, 49. It can also led to DNA
conformation changes affecting protein–DNA interaction
strength, including an order of magnitude increase in adjacent
DHS50. We identified a strong enrichment of CpG-SNPs within
HSM peak regions as well as within allele-specific DHS sites.
Previous work from Jaffe et al.51 has also investigated GWAS loci
with respect to DNA methylation from array data and identified a
strong enrichment for mQTL within these loci. Furthermore,
many of these mQTLs were not cell-type specific and involved
critical disrupting CpG-SNPs, in similar fashion to our HSM data
set. That analysis also proposed that many GWAS variants and
highly correlated proxy SNPs influence nearby DNA methylation
and in this way impact upon disease risk. An analysis in lung
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tissue by Shi et al. equally found that cis-mQTL reside at CpG-
SNPs distal to both genes or CpG-dense promoter regions52, and
that mQTLs themselves are also enriched for CTCF loci, DHS
and chromatin modifications. In our analysis a strong enrichment
particularly for allele-specific CTCF was also seen, potentially
indicating the ability of these loci to contribute to population
variation in 3D structure42.

On average ~2.65 HSM peaks were identified per GWAS LD
blocks regions (59.0%≥1) and these will enable further hypoth-
eses to be proposed in these disease susceptibility regions. The
strong genetic influences on the DNA methylome leads to many
more significant results than are seen for other potentially ‘pure’
epigenetic changes. For example, only 71 Bonferroni significant
ageing-specific DMRs were identified in this same data set
(including an LD correction for genetic effects)53. However, it
needs to be clearly noted that methylation is the default state for
the majority of CpGs throughout the genome. Those signals
driven by variation in CpG number between risk and non-risk
haplotypes can not be directly interpreted as functional, as is the
case for tissue-specific epigenomic data, such as DHSs32. Yet the
HSM peaks identified are enriched for functional indicators such
as enhancer signal as well as motifs for DNA methylation sen-
sitive TFs. Similarly to the hap-ASM results of Do et al.6 they are
also located outside CpG island promoter regions. Some of these
peaks may represent population variation in distal regulatory
regions, such as low methylation regions (LMRs)14. These LMR
loci require a genetic infrastructure of a slightly above baseline
CpG level and co-locate with transcription factor binding and
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enhancer evidence. This may then facilitate time- or tissue-
specific epigenetic variability.

Global diversity in large deletions, duplication and CNVs have
had a significant influence on shaping the genome of human
populations through selection, mutation and demography54. The
functional potential of these large-scale variants is significant and
these regions, as would be expected due to modulation of avail-
able CpGs, influence signal and strongly overlap with HSM peaks.
Additionally, STRs contribute to HSM peaks and these variants
have shown enhancer activity55 as well as the ability to influence
expression56. Furthermore, DNA methylation within transpo-
sable elements can influence nearby gene expression57. Our data
indicated enrichment for functionally implicated LTR repeat
elements, HERV-H and LTR12C40. As well we see enrichment for
younger primate-specific Alus and hominid-specific SVA repeats,
which have known germline insertion mobility and population
variability58. Thus, some of the HSM peaks represent their direct
or adjacent positional effects on the regional epigenome58.

GWAS results are capturing haplotypes and a single variant
may not be the only causal element. Recent analysis has proposed
that the fraction of causal variation tagged by common SNPs is
higher than previously calculated59. Therefore, there may be
multiple genetic variants impacting to varying degrees, with some
acting via this observed DNA methylation variability. Whilst
functional overlap with HSM peaks was identified, this may itself
be an underestimate, as the data sets for comparison themselves,
such as chromatin segmentation, have only been performed in
small numbers46. Population epigenomic variation will exist
beyond that in current reference epigenomes. Our evidence of
genetic effects in both the VMR and ‘Dynamic’ methylome data
further imply that genetic polymorphism drives some of these
findings assumed to be purely epigenetic. Additionally, strong
HSM effects were previously identified in the FTO GWAS locus12.
This located a peak within an enhancer region, which influences
IRX3 expression60, that highlighted a SNP (rs7202116) subse-
quently found in a large meta-analysis to influence trait varia-
bility61. Thus, the potential of all 7173 HSM peaks is worthy of
exploration and make excellent candidates for further functional
analyses.

These extremely strong HSM signals clearly point to the cau-
tion and extra exploration required in the interpretation of

population or non-inbred MeDIP as well as other DNA methy-
lome analyses. Adjusting for known genetic influences impacts
greatly on EWAS array analysis for common disease and phe-
notypes47. It is notable the pausity of significant directional
disease-associated findings in robustly controlled experiments
that have reduced genetic and cell-type heterogeneity issues by
the use of isolated cell types in monozygotic twin discordant
models62. Therefore, researchers need to be as aware as possible
of the potential genetic confounding and/or interaction, both
directly or due to regional or neighbouring effects. Our data set
adds to the available genetic effects to be integrated in these
analyses (Supplementary Data 1). Researchers should also inter-
rogate results for additional evidence of strong genetic effects,
such as ʻgap hunting’ in DNA methylation data that may indicate
the strongest of these genetic influences63, as well as population-
specific data availability of CpG-SNPs and larger genetic variants.
A focused examination for mQTL SNPs influencing DNA
methylation variability through haplotypic effects may be made
more powerful by reducing tests through population-specific LD
information. A tagging analysis may reveal unknown regional or
haplotypic effects on the observed DNA methylation. We iden-
tified ~10.0% of the 450k CpG probes within these GWAS regions
may be influenced (p< 0.05) by their lead SNP captured haplo-
type background, even after excluding probes with common SNP
co-location. Identified effects require exploration for evidence of
obligatory, facilitative, or dosage factors, as previously observed in
array analysis64. Do et al. also identified haplotypic effects on a
DNA methylation array analysis of Alzheimer’s disease being
driven by the nearby genetic susceptibility factor at HLA-DR*6.
Furthermore, of the 278,873 probes on the new Illumina EPIC
(850k) within these GWAS regions, 1815 directly overlap an
identified HSM peak, and this further rises to 6671 probes
including those within a 1 kb flanking region. Technological
advances, including direct assessment of DNA modifications in
long reads to enable more robust genetic and epigenetic haplo-
typic assessment will obviously improve our knowledge of these
interactions and their interplay in disease risk.

We identified functionally enriched DNA methylome variation
between risk and non-risk GWAS haplotypes. This robust set of
HSM peaks propose potential new mechanisms to combine with
tissue-specific data to further understand these diseases. Thus,
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this integrative analysis is a step in the process of defining
population variation in the facilitative and obligatory DNA
methylome. Complete allelic integration of both genetic and
epigenetic variability will be required to fully understand these
human disease-associated regions. Future advances with direct
epigenetic detection and longer reads, will help define more
precisely this variability. These HSM peaks begin this process by
giving strongly demarcated loci across these GWAS regions, for
further exploration and integration in human disease suscept-
ibility understanding.

Methods
Subjects. For this study, peripheral blood-derived DNA was provided by the adult
volunteers from the UK Twin Register (TwinsUK Resource) who are rigorously
phenotyped at visits at St Thomas’ Hospital, London. Blood is collected for hae-
matological analysis and DNA extraction at these appointments. Tobacco smoking
is queried at this time or via questionnaire within the nearest 5 years. Samples are
stored at −80 °C in EDTA tubes before extraction via the Nucleon Genomic DNA
Extraction Kit. DNA is subsequently stored in TE Buffer at −20 °C. The majority of
samples have full blood count data. Twinning questionnaire determines twin
zygosity and is confirmed by genotyping. Ethics were approved by Guy’s & St
Thomas’ NHS Foundation Trust Ethics Committee (EC04/015—15-Mar-04) and
written informed consent was obtained from all subjects in accordance with this.

The initial Discovery analysis set (1DISC) comprised of 895 DNA methylomes
of 895 unique individuals. These included only a single sample from each family i.e.
non-related individuals and only female samples to exclude sex-specific variation in
DNA methylation. The second Follow-Up data set (2FOLL) comprised of 1343
methylomes and included siblings and some longitudinal data set from Set 1. The
third Replication data set (3REPL) comprised 890 DNA methylomes of non-related
individuals to the first two sets. Our discovery set is well powered to detect
moderate sized effects (Cohen’s f2= 0.15)65 as we estimate these can be identified
with 95% power in ~500 samples. Furthermore, we possess the added benefit in this
analysis of the two additional data sets for conformation and replication.

MeDIP-seq. The methods and analysis pipeline made use of Methylation
Dependent Immunoprecipitation Illumina second-generation sequencing (MeDIP-
seq). BGI-Shenzhen (Shenzhen, China) performed DNA sample preparation, fol-
lowed by Sonication with a Covaris system (Woburn, MA, USA) that fragmented
whole peripheral blood DNA. Then the MeDIP reaction was performed and 5 ug of
fragmented genomic DNA was used for sequencing library preparation. Illumina
Single-End DNA Sample Prep kit was employed and end repair, <A> base
addition and adaptor ligation steps were performed. Adaptor-ligated DNA was
incubated with an antibody for 5-methylcytosine (5mC) Cat. No.: CO2010021 mc-
magme-048 from Diagenode (Liège, Belgium). The protocol for the MagMeDIP kit
(mc-magme-048) was followed: combining 0.5 μl antibody + 0.5 μl water; then add
0.6 μl MagBuffer A, 1.4 μl water, 2 μl MagBuffer C, therefore resulting in a final
volume of 5 μl for the IP reaction. Immunocapture was performed with magnetic
bead conjugation to capture the enriched DNA fraction. Quantitative PCR vali-
dated this resultant MeDIP, which was then purified with Zymo DNA Clean &
Concentrator-5 (Zymo Research), and amplified with adaptor-mediated PCR. Gel
excision for size selection of fragments (200–500 bp) was performed and these were
quality assessed by Agilent BioAnalyzer (Agilent Technologies, Santa Clara, CA,
USA). The libraries were subjected to highly parallel 50-bp single-end sequencing
on the Illumina HiSeq2000 platform. FASTQC (v0.10.0) assessed initial base
composition QC successfully. MeDIP-seq data was aligned with BWA (>mapping
quality score of Q10), and duplicates were removed. The average high-quality
BWA aligned reads was ~16.9 million per sample. Quality control with SAMTools
and FastQC and for MeDIP-specific analysis MEDIPS(v1.0)66 was used to produce
reads per million (RPM). These data were produced as BED files of genomic
windows (500 bp, 250 bp slide). Additional quality checks were also employed with
Principle Components Analysis and correlation matrix, hierarchical clustering,
dendogram, heatmap, and density plots. All analysis and co-ordinates cited are for
genome build Homo sapiens hg19/GRCh37.

GWAS linkage disequilibrium blocks. Linkage disequilibrium blocks of the SNPs
in the NHGRI-EBI GWAS catalogue1, 11 were ascertained from the GRCh37
genetic map, downloaded from Center of Statistic Genetics, University of Michi-
gan, Locuszoom 1.367. Recombination rate 10 cM/Mb block boundaries were used.
The NHGRI-EBI GWAS catalogue as at December 2014 provided the 8093 GWAS
SNPs with p value<1 × 10−7 deposited to that time point. These are in fact 5522
unique individual SNPs due to co-associations for the same SNP. Within the
above-identified LD blocks 5474 of these SNPs were positioned and due to SNPs
co-locating in the same block these represented a total of 2709 blocks, covering
~22.1% of the genome.

Risk haplotype-specific methylation analysis. DNA methylation within the LD
blocks of the GWAS catalogue association SNPs was compared by linear regression

with respect to allelic count of the haplotype-tagging SNP, termed HSM analysis12.
This identifies broad DNA methylation differences between risk and non-risk
GWAS haplotypes. With MeDIP there is a direct relationship between the number
of methylated cytosines in the DNA fragment and the amount of DNA captured by
the antibody16. Therefore, genetic gains or losses of CpGs will influence the
enrichment of fragments strongly. Consequently, this analysis results in a distinct
signal due to population variation in both facilitated and obligatory genetic effects
on the DNA methylome. These regions may have direct or regional impacts on
further surrounding CpG methylation states with the potential for significant
functional effects in these GWAS regions. DNA methylation was scored within 500
bp windows with 250 bp overlap by normalised RPM for each window. In the
discovery set (1DISC) a linear model was fitted including chronological age at
blood extraction for DNA sample, blood cell subtypes (lymphocytes, monocyte,
neutrophil and eosinophil), smoking status and batch. In the Follow-Up (2FOLL),
a linear mixed effect model was used for allelic count to DNA methylation with the
fixed effects of 1DISC with additional family and zygosity as random effects. The
replication (3REPL) set analysis was the same as for 2FOLL, but included sex and
excluded blood and smoking covariate information. The described two linear
effects models were compared with null models that excluded allelic count by the
ANOVA function by likelihood ratio test for calculation of p-values. The lme4 R
package was used to perform the linear mixed effect analysis of the relationship
between allelic count of the haplotype-tagging SNP and normalised DNA
methylation assayed by MeDIP-seq.

To correct for multiple testing, a strict Bonferroni cut-off was calculated by the
total number of DNA methylome windows tested in the analysis, 2,708,462. Thus, a
p-value significance level of <1.85 × 10−8. The mean p-value was calculated for each
window for GWAS LD block regions containing greater than one GWAS SNP.
ENCODE poor mappability blacklist regions31 were subsequently removed from
any further interpretation (13,726 windows removed). To identify a robust set of
HSM peaks we determined those windows that passed the Bonferroni threshold in
all three (1DISC, 2FOLL and 3REPL) subsets. The R (3.0.0) environment was used
for all analysis, with graphing via the ggplot2 package with results and
code available at http://www.epigenome.soton.ac.uk/hsm/hsm.php.

Variants within GWAS LD block regions and HSM peaks. Common genetic
variants that overlapped locations within the GWAS LD block regions were
defined. This included copy number variants (CNVs), insertions and deletions
(Indels) and short tandem repeats (STRs). As above the known Blacklist regions
were overlapped (13,726 windows, ~0.5%) and then removed before subsequent
enrichment analyses below. Common CNV data was ascertained from the Strin-
gent set of the copy number variation map of the human genome in the Database
of genomic variants from Zarrei et al. which includes CNV sized 50 bp to 3 Mb68.
Indel data was obtained from the TwinsUK data set with 1000 Genomes impu-
tation of MAF>0.05. Short tandem repeats or Microsatellite data was obtained
from the landscape of human STR variation from Willems et al. of 689,512 STRs69.
Furthermore, a subset of these STRs with recent evidence of effects on gene
expression, 2060 expression STRs (eSTRs), was also investigated for overlap70.
Large study numbers reduced substantially the potential influence of rare or private
CNVs, indels and STRs on this analysis.

CpG-SNP identification. The dbSNP build 142 common SNP data set was
downloaded including SNP alleles and surrounding base sequence. This represents
12,449,124 common SNPs found in ≥1% of samples within autosomes. These were
then interrogated for those that were CpG-SNPs, i.e. where the allelic variation
created or abrogated a CpG dinucleotide. 3,873,489 (~31.1%) of these SNPs were
determined to be CpG-SNPs.

Enrichment analysis. We used Epiexplorer for our first examination of the HSM
peaks71 for assessment of enrichment for chromatin state (ChromHMM), histone
modifications and TFBSs. We downloaded the additional Combined segmentation
data for 6 tissue types (Gm12878; H1hesc; Helas3; Hepg2; Huvec; K562) from
UCSC. Additional functional enrichments were also downloaded from UCSC data
on CpG islands, ENCODE DHS in 125 cell types2, Vertebrate Multiz Alignment
and Conservation (100 Species) from 100Vert_El_phastConsElement100way bed-
file (~10.1 m regions), and TFBSs from ENCODE v3 (690 data sets from wgEn-
codeRegTfbsClusteredV331). ‘Dynamic’ DNA methylation regions were taken from
Ziller et al.30 and eRNA validated FANTOM5 enhancers regions from Anderson
et al.72. BEDTools (v 2.17.0)73 IntersectBed with the f -0.1 parameter tested overlap
between 500 bp non-overlapping windows of these elements and within the GWAS
LD block regions.

Genomic regions enrichment of annotations tool (GREAT v3.0.0) was used for
genomic-space aware Gene and Functional pathway enrichments74. The binomial
analysis with default setting for basal, and extension parameters (constitutive 5.0 kb
upstream, 1.0 kb downstream and up to 1Mb max extension) was employed.
Curated regulatory domains were also included. Two background sets were used
for comparison, firstly the entire genome and secondly the GWAS LD block
regions (Supplementary Note 1).

Transcription factor binding site motif enrichment was performed with the
JASPAR core 2014 vertebrates database in the MEME suit (MEME-ChIP36) with
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TOMTOM37 (v4.10.2) using FASTA sequence files for the HSM peaks. MEME-
Chip analysis compared with a set of 1434 DNA motifs, between 5 and 30 in length
(average length 13.6), from the database Vertebrates (in vivo and in silico).

Tissue-specific and multi-tissue disease investigation. DNase I hypersensitivity
sites data in 125 cell types, including 22 blood cell data sets, from the ENCODE
analysis of Thurman et al.2 were downloaded to compare any potential tissue
enrichment of the HSM peaks. The total basepair overlap with DHS sites was
compared between the HSM peaks and the entire genome. To investigate whether
these peripheral blood-derived HSM peaks were enriched for blood-related disease
categories, the broad disease categories as defined in Maurano et al. were used
which had classified 5655 SNP-trait associations32. These 15 classes are: aging;
autoimmune disease; cancer; cardiovascular; diabetes; drug metabolism; haema-
tological parameters; kidney, lung and liver; miscellaneous; neurological and
behavioural; parasitic and bacterial disease; quantitative traits; radiographic para-
meters; serum metabolites and viral disease. This data set was also used to identify
multi-tissue associations (Supplementary Note 2).

DNA methylation array analysis. A data set of 811 females (two batches: 388 and
423) were analysed by the Infinium Human Methylation450 BeadChip from
bisulphite-converted DNA derived from peripheral blood. 88.9% of these samples
also overlap the MeDIP samples. The quality control steps comprised the removal
of probes that reside on the X or Y chromosomes (n= 11,650), where the 50 bp
sequence aligned to multiple locations in the genome (n = 17,764), or failed
detection in ≥1 sample and with a bead count <3 in >5% of the samples. This
resulted in a data set of 450,077 probes. Further QC involved inspection for outliers
using boxplots for mean and median DNA methylation across all CpG sites, β
density plots, and heatmaps. The proportion of blood cell subtypes was decon-
voluted for CD8+ T cells, CD4+ T cells, B cells, Natural Killer cells, granulocytes
and monocytes75. To correct for probe type bias all data was normalised via
BMIQ76. Probes that resided within the GWAS LD Block Regions (169,151) were
assessed for any significant GWAS SNP associated differentially methylated posi-
tions. This was performed using a linear mixed effects model fitted on standardised
β values per probe (N(0,1)), with genotype as allelic count, age, smoking status,
beadchip, position on the beadchip, granulocytes, monocytes, and CD8+ T cells as
fixed effects, as well as family and zygosity as random effects. To assess for sig-
nificance, ANOVA was used to compare this model to a null model without allelic
count. Permutation was performed in R by random shuffling of genotype assign-
ment of individuals whilst retaining all other variables constant.

Allele-specific data sets. We accessed the data on allele-specific CTCF from Ding
et al.41. Allele-specific DNase-I Hypersensitivity SNPs, also termed ‘Switch-SNPs’,
influence TF binding and were downloaded from Moyerbrailean et al.33.

Data availability. The data supporting the results of this article are available in the
EMBL-EBI European Genome-phenome Archive (EGA) under Data set Accession
number EGAD00010000983 (https://www.ebi.ac.uk/ega/datasets/
EGAD00010000983).
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