41 research outputs found

    Crystal nucleation in food colloids

    Get PDF
    Crystal nucleation in food colloids is considered in the light of recent developments in classical nucleation theory (CNT); it is shown that CNT remains a sound basis upon which to understand nucleation in colloids and in particular nucleation in lipids such as triacylglycerols. Computation of the energy barrier to nucleation for a studied triacylglycerol system (Cocoa butter oil-in-water emulsion) indicates that whilst homogeneous nucleation is unlikely at higher surface energies the addition of surfactant, lowering the interfacial energy may have a dramatic impact on surface nucleation rates. Data is included supporting this contention. The impact of reducing the size of colloidal particles to the point where the interfacial region occupies a significant proportion of the total volume of the dispersed phase is discussed and it is suggested that in these circumstances undercooling may fall significantly in comparison with the undercooling measured in micrometre emulsions

    Ultrasonic wave propagation in powders

    Get PDF
    Powder clumps (cakes) has a significant effect on the flowability and stability of powders. Powder caking is mainly caused by moisture migration due to wetting and environmental (temperature and humidity) changes. The process of moisture migration caking involves creating liquid bridges between the particles during condensation which subsequently harden to form solid bridges. Therefore, an effective and reliable technique is required to quantitatively and non-invasively monitor caking kinetics and effective stiffness. This paper describes two ultrasonic instruments (ultrasonic velocity pulse and airborne ultrasound systems) that have been used to monitor the caking phenomenon. Also, it discusses the relationship between the ultrasonic velocity and attenuation measurements and tracking caking kinetics and the effective stiffness of powders

    Determination of Asphaltene Critical Nanoaggregate Concentration Region Using Ultrasound Velocity Measurements

    Get PDF
    Asphaltenes constitute the heaviest, most polar and aromatic fraction of petroleum crucial to the formation of highlystable water-in-crude oil emulsions. The latter occur during crude oil production as well as spills and cause difficulties to efficient remediation practice. It is thought that in nanoaggregate form, asphaltenes create elastic layers around water droplets enhancing stability of the emulsion matrix. Ultrasonic characterisation is a high-resolution non-invasive tool in colloidal analysis shown to successfully identify asphaltene nanoaggregation in toluene. The high sensitivity of acoustic velocity to molecular rearrangements and ease in implementation renders it an attractive method to study asphaltene phase properties. Currently, aggregation is thought to correspond to an intersection of two concentration-ultrasonic velocity regressions. Our measurements indicate a variation in the proximity of nanoaggregation which is not accounted for by present models. We attribute this uncertainty to physico-chemical heterogeneity of the asphaltene fraction driven by variation in molecular size and propose a critical nanoaggregation region. We treated asphaltenes from North and South American crude oils with ruthenium ion catalysed oxidation to characterise their n-alkyl appendages attached to aromatic cores. Principal component analysis was performed to investigate the coupling between asphaltene structures and velocity measurements and their impact on aggregation

    Determination of Asphaltene Critical Nanoaggregate Concentration Region Using Ultrasound Velocity Measurements

    Get PDF
    Asphaltenes constitute the heaviest, most polar and aromatic fraction of petroleum crucial to the formation of highly-stable water-in-crude oil emulsions. The latter occur during crude oil production as well as spills and cause difficulties to efficient remediation practice. It is thought that in nanoaggregate form, asphaltenes create elastic layers around water droplets enhancing stability of the emulsion matrix. Ultrasonic characterisation is a high-resolution non-invasive tool in colloidal analysis shown to successfully identify asphaltene nanoaggregation in toluene. The high sensitivity of acoustic velocity to molecular rearrangements and ease in implementation renders it an attractive method to study asphaltene phase properties. Currently, aggregation is thought to correspond to an intersection of two concentration-ultrasonic velocity regressions. Our measurements indicate a variation in the proximity of nanoaggregation which is not accounted for by present models. We attribute this uncertainty to physico-chemical heterogeneity of the asphaltene fraction driven by variation in molecular size and propose a critical nanoaggregation region. We treated asphaltenes from North and South American crude oils with ruthenium ion catalysed oxidation to characterise their n-alkyl appendages attached to aromatic cores. Principal component analysis was performed to investigate the coupling between asphaltene structures and velocity measurements and their impact on aggregation

    Enzyme activity determination using ultrasound

    Get PDF
    Here are presented the results of a novel approach to the measurement of enzyme reaction rates in which ultrasound velocity measurement is used. Our results show enzyme activity is observable, in the acoustic context, and that furthermore this offers the potential to estimate the rate of reaction over different substrate concentrations and temperatures. Findings are corroborated with optical microscopy and rheological measurements. Ultrasound velocity measurement can be performed without the need for aliquot extraction and offers an efficient, non-invasive and dynamic method to monitor enzyme activity

    Nucleation in food colloids

    No full text
    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products

    The acoustic spectroscopy of asphaltene aggregation in petroleum

    No full text
    corecore