118 research outputs found

    A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    Get PDF
    CurcumalongaL.(Zingiberaceaefamily)anditspolyphenoliccompoundcurcuminhavebeensubjectedtoavarietyofantimicrobial investigationsduetoextensivetraditionalusesandlowsideeffects.Antimicrobialactivitiesforcurcuminandrhizomeextractof C.longaagainstdifferentbacteria,viruses,fungi,andparasiteshavebeenreported.Thepromisingresultsforantimicrobialactivity ofcurcuminmadeitagoodcandidatetoenhancetheinhibitoryeffectofexistingantimicrobialagentsthroughsynergism.Indeed, differentinvestigationshavebeendonetoincreasetheantimicrobialactivityofcurcumin,includingsynthesisofdifferentchemical derivativestoincreaseitswatersolubilityaswellasscelluptakeofcurcumin.Thisreviewaimstosummarizepreviousantimicrobial studiesofcurcumintowardsitsapplicationinthefuturestudiesasanaturalantimicrobialagent

    Antibacterial activity of leaf extracts of Baeckeafrutescens against Methicillin resistant Staphylococcus aureus

    Get PDF
    This study was based on screening antibacterial activity of the ethanol extract of Baeckea frutescens L. against MRSA clinical isolates, analyzes the potential antibacterial compound, and assesses the cytotoxicity effect of the extract in tissue culture. Leaves of Baeckea frutescens L. were shade dried, powdered, and extracted using solvent ethanol. Preliminary phytochemical screening of the crude extracts revealed the presence of alkaloids, flavonoids, steroids, terpenoids, phenols, and carbohydrates. The presence of these bioactive constituents is related to the antibacterial activity of the plant. Disc diffusion method revealed a high degree of activity against microorganisms. The results confirm that Baeckea frutescens L. can be used as a source of drugs to fight infections caused by susceptible bacteria

    О закономерностях распределения гелия в осадочном чехле юго-востока Беларуси

    Get PDF
    In this work, microscopic and histological studies suggest that Strobilanthes crispus ethanol extract reduce azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. S. crispus is considered a traditional medicine and used as an antioxidant. Its leaf contains a large amount of phenolic compounds to which its radical scavenging role is attributed and enhance its ability to eradicate oxidative stress reactions. The study was designed to determine the chemopreventive effect of S. crispus ethanol extract in vivo and in vitro by elucidating the effect of the extract on intermediate biomarkers which can be used as effective predictors of colon cancer. S. crispus was analyzed for DPPH free radical scavenging, nitric oxide (NO) and ferric acid reduction. The results indicated that S. crispus oral administration significantly inhibited colorectal carcinogenesis induced by AOM as revealed by the reduction in the number of ACF. S. crispus down-regulated the expression of PCNA, Bcl2 and beta-catenin. Additionally, it exerted a pronounced inhibitory effect on MDA and NO levels and stimulatory effect on CAT and GPx activities. These results demonstrate that S. crispus is a chemopreventive agent for colorectal cancer through the suppression of early and intermediate carcinogenic phases that may be related to its flavonoid content

    Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo

    Get PDF
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p < 0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p < 0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori

    Knowledge of SARS-CoV-2 Epitopes and Population HLA Types Is Important in the Design of COVID-19 Vaccines

    No full text
    The COVID-19 pandemic has caused extensive loss of lives and economic hardship. In response, infectious disease experts and vaccine developers promptly responded by bringing forth candidate vaccines, some of which have been listed in the World Health Organization’s Emergency Use Listing. Notwithstanding the diverse worldwide population genetics, the vaccines thus far developed are generic in nature for use worldwide. Differences in the human leukocyte antigen (HLA) in different populations, variation of the T cell epitopes, and the propensity of SARS-CoV-2 genetic mutations left room for improvement of the vaccines. Here, we discussed the implications of COVID-19 vaccination and SARS-CoV-2 infection by taking into consideration SARS-CoV-2 mutations, T cell epitopes, risk factors, and current platforms of candidate vaccines based on the HLA types that are commonly present in Peninsular Malaysia Chinese, Indian, and Malay populations. The HLA types associated with protection against and susceptibility to severe SARS-CoV-2 infection were identified based on reported case-control and cohort studies. The relevance of including the non-spike SARS-CoV-2 proteins in the future COVID-19 vaccines is also highlighted. This review is meant to trigger researchers to acknowledge the importance of investigating the possible relationships between the HLA haplotype and the SARS-CoV-2 strains circulating in different populations

    N95 respirator hybrid decontamination method using Ultraviolet Germicidal Irradiation (UVGI) coupled with Microwave-Generated Steam (MGS).

    No full text
    The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs

    Acute Toxicity and Gastroprotective Effect of the Schiff Base Ligand 1H-Indole-3-ethylene-5-nitrosalicylaldimine and Its Nickel (II) Complex on Ethanol Induced Gastric Lesions in Rats

    Get PDF
    The present study was performed to evaluate the gastroprotective activity of Schiff base ligand derived from the condensation reaction of tryptamine (an indole derivative) and 5-nitrosalicylaldehyde (TNS) and its nickel (II) complex against ethanol-induced gastric ulcer in rats. The compounds were orally administered with low (30 mg/kg) and high (60 mg/kg) doses to ulcer-induced Sprague-Dawley rats. Macroscopically, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with either cimetidine or TNS and its nickel (II) complex each resulted in significant protection against gastric mucosal injury. Flattening of gastric mucosal folds was also observed in rats pretreated with TNS and its nickel complex. Histological studies of the gastric wall of ulcer control group revealed severe damage of gastric mucosa, along with edema and leucocytes infiltration of the submucosal layer compared to rats pre-treated with either cimetidine or TNS and its nickel (II) compound, where there was marked gastric protection along with reduction of edema and leucocytes infiltration of the submucosal layer. Acute toxicity study done on mice with a higher dose of 5 g/kg of TNS and its nickel (II) complex did not manifest any toxicological signs. Research finding suggest that TNS and its nickel (II) complex could be considered as effective gastroprotective compounds

    Fisetin Modulates Toll-like Receptor-Mediated Innate Antiviral Response in Chikungunya Virus-Infected Hepatocellular Carcinoma Huh7 Cells

    No full text
    In the chronic phase of chikungunya virus (CHIKV) infection, excessive inflammation manifests as incapacitating joint pain and prolonged arthritis. Arthritis resulted from a large influx of infiltrating immune cells driven by pro-inflammatory cytokines and chemokines originating from the toll-like receptor (TLR)-mediated innate antiviral response. This study investigated fisetin’s ability to modulate TLR-mediated antiviral responses against CHIKV in Huh7 cells. The CHIKV inhibitory potential of fisetin was assessed by plaque-forming unit assay, virus yield reduction assay, and bright-field microscopy (cytopathic effect, immunofluorescence). Fisetin’s modulatory potential on TLR-mediated antiviral response was evaluated by immunofluorescence assay (expression of TLR proteins), qRT-PCR (mRNA level of antiviral genes), human cytokine array, and the immunoblotting of key transcription factors. The present study showed fisetin induced the expression of the antiviral genes at an early time-point by promoting the phosphorylation of IRF3 and IRF7. Fisetin reduced excessive inflammatory cytokine responses in CHIKV-infected Huh7 cells by impeding the over-phosphorylation of NF-κB. Fisetin also reduced CHIKV-induced cytopathic effects in CHIKV-infected Huh7 cells. Altogether, our study suggests that fisetin modulates TLR-mediated antiviral responses by affecting the CHIKV-induced inflammatory responses

    Fisetin Modulates Toll-like Receptor-Mediated Innate Antiviral Response in Chikungunya Virus-Infected Hepatocellular Carcinoma Huh7 Cells

    No full text
    In the chronic phase of chikungunya virus (CHIKV) infection, excessive inflammation manifests as incapacitating joint pain and prolonged arthritis. Arthritis resulted from a large influx of infiltrating immune cells driven by pro-inflammatory cytokines and chemokines originating from the toll-like receptor (TLR)-mediated innate antiviral response. This study investigated fisetin&rsquo;s ability to modulate TLR-mediated antiviral responses against CHIKV in Huh7 cells. The CHIKV inhibitory potential of fisetin was assessed by plaque-forming unit assay, virus yield reduction assay, and bright-field microscopy (cytopathic effect, immunofluorescence). Fisetin&rsquo;s modulatory potential on TLR-mediated antiviral response was evaluated by immunofluorescence assay (expression of TLR proteins), qRT-PCR (mRNA level of antiviral genes), human cytokine array, and the immunoblotting of key transcription factors. The present study showed fisetin induced the expression of the antiviral genes at an early time-point by promoting the phosphorylation of IRF3 and IRF7. Fisetin reduced excessive inflammatory cytokine responses in CHIKV-infected Huh7 cells by impeding the over-phosphorylation of NF-&kappa;B. Fisetin also reduced CHIKV-induced cytopathic effects in CHIKV-infected Huh7 cells. Altogether, our study suggests that fisetin modulates TLR-mediated antiviral responses by affecting the CHIKV-induced inflammatory responses

    From defense to offense: Modulating toll-like receptors to combat arbovirus infections

    No full text
    ABSTRACTArboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections
    corecore