60 research outputs found

    ‘Hygienic’ Lymphocytes Convey Increased Cancer Risk

    Get PDF
    Risk of developing inflammation-associated cancers has increased in industrialized countries during the past 30 years. One possible explanation is societal hygiene practices with use of antibiotics and Caesarian births that provide too few early life exposures of beneficial microbes. Building upon a ‘hygiene hypothesis’ model whereby prior microbial exposures lead to beneficial changes in CD4+ lymphocytes, here we use an adoptive cell transfer model and find that too few prior microbe exposures alternatively result in increased inflammation-associated cancer growth in susceptible recipient mice. Specifically, purified CD4+ lymphocytes collected from ‘restricted flora’ donors increases multiplicity and features of malignancy in intestinal polyps of recipient Apc[superscript Min/+] mice, coincident with increased inflammatory cell infiltrates and instability of the intestinal microbiota. We conclude that while a competent immune system serves to maintain intestinal homeostasis and good health, under hygienic rearing conditions CD4+ lymphocytes instead exacerbate inflammation-associated tumorigenesis, subsequently contributing to more frequent cancers in industrialized societies.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant U01 CA164337)National Institutes of Health (U.S.) (Grant RO1CA108854

    Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice

    Get PDF
    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant RO1CA108854)National Institutes of Health (U.S.) (Grant U01 CA164337

    Microbial lysate upregulates host oxytocin

    Full text link
    Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.Published versio

    Dietary Microbes Modulate Transgenerational Cancer Risk

    Get PDF
    Environmental factors are suspected in the increase of obesity and cancer in industrialized countries but are poorly understood. Here, we used animal models to test how future generations may be affected by Westernized diets. We discover long-term consequences of grandmothers' in utero dietary exposures, leading to high rates of obesity and frequent cancers of lung and liver in two subsequent generations of mice. Transgenerational effects were transplantable using diet-associated bacteria communities alone. Consequently, feeding of beneficial microbes was sufficient to lower transgenerational risk for cancer and obesity regardless of diet history. Targeting microbes may be a highly effective population-based approach to lower risk for cancer.National Institutes of Health (U.S.) (RO1CA108854)National Institutes of Health (U.S.) (U01 CA164337)National Institutes of Health (U.S.) (P30-ES002109

    The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGFβ Signaling

    Get PDF
    Downregulation of the cylindromatosis (CYLD) tumor suppressor has been associated with breast cancer development and progression. Here, we report a critical role for CYLD in maintaining the phenotype of mammary epithelial cells in vitro and in vivo. CYLD downregulation or inactivation induced an epithelial to mesenchymal transition of mammary epithelial cells that was dependent on the concomitant activation of the transcription factors Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) and transforming growth factor beta (TGF�)signaling. CYLD inactivation enhanced the nuclear localization of YAP/TAZ and the phosphorylation of Small Mothers Against Decapentaplegic (SMAD)2/3 proteins in confluent cell culture conditions. Consistent with these findings were the hyperplastic alterations of CYLD-deficient mouse mammary epithelia, which were associated with enhanced nuclear expression of the YAP/TAZ transcription factors. Furthermore, in human breast cancer samples, downregulation of CYLD expression correlates with enhanced YAP/TAZ-regulated target gene expression. Our results identify CYLD as a critical regulator of a signaling node that prevents the coordinated activation of YAP/TAZ and the TGF� pathway in mammary epithelial cells, in order to maintain their phenotypic identity and homeostasis. Consequently, they provide a novel conceptual framework that supports and explains a causal implication of deficient CYLD expression in aggressive human breast cancers

    Gut bacteria require neutrophils to promote mammary tumorigenesis

    Get PDF
    Recent studies suggest that gastrointestinal tract microbiota modulate cancer development in distant non-intestinal tissues. Here we tested mechanistic hypotheses using a targeted pathogenic gut microbial infection animal model with a predilection to breast cancer. FVB-Tg(C3-1-TAg)cJeg/JegJ female mice were infected by gastric gavage with Helicobacter hepaticus at three-months-of-age putting them at increased risk for mammary tumor development. Tumorigenesis was multifocal and characterized by extensive infiltrates of myeloperoxidase-positive neutrophils otherwise implicated in cancer progression in humans and animal models. To test whether neutrophils were important in etiopathogenesis in this bacteria-triggered model system, we next systemically depleted mice of neutrophils using thrice weekly intraperitoneal injections with anti-Ly-6G antibody. We found that antibody depletion entirely inhibited tumor development in this H. hepaticus-infected model. These data demonstrate that host neutrophil-associated immune responses to intestinal tract microbes significantly impact cancer progression in distal tissues such as mammary glands, and identify gut microbes as novel targets for extra-intestinal cancer therapy.National Institutes of Health (U.S.) (Grant U01 CA164337)National Institutes of Health (U.S.) (Grant T32 OD011141

    The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems

    Get PDF
    Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making. (C) 2018 The Authors. Published by Elsevier B.V.Peer reviewe

    Pathogenic Intestinal Bacteria Enhance Prostate Cancer Development via Systemic Activation of Immune Cells in Mice

    Get PDF
    A role for microbes has been suspected in prostate cancer but difficult to confirm in human patients. We show here that a gastrointestinal (GI) tract bacterial infection is sufficient to enhance prostate intraepithelial neoplasia (PIN) and microinvasive carcinoma in a mouse model. We found that animals with a genetic predilection for dysregulation of wnt signaling, Apc[superscript Min/+] mutant mice, were significantly susceptible to prostate cancer in an inflammation-dependent manner following infection with Helicobacter hepaticus. Further, early neoplasia observed in infected Apc[superscript Min/+] mice was transmissible to uninfected mice by intraperitoneal injection of mesenteric lymph node (MLN) cells alone from H. hepaticus-infected mutant mice. Transmissibility of neoplasia was preventable by prior neutralization of inflammation using anti-TNF-α antibody in infected MLN donor mice. Taken together, these data confirm that systemic inflammation triggered by GI tract bacteria plays a pivotal role in tumorigenesis of the prostate gland.RO1CA108854National Institute of Environmental Health Sciences (Massachusetts Institute of Technology. Center for Environmental Health Sciences Pilot Project Award P30-ES002109

    Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular Size in Aging Mice

    Get PDF
    The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant U01 CA164337)National Institutes of Health (U.S.) (Grant RO1CA108854

    Probiotic Bacteria Induce a ‘Glow of Health’

    Get PDF
    Radiant skin and hair are universally recognized as indications of good health. However, this ‘glow of health’ display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health
    corecore