10 research outputs found

    Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion

    Full text link
    Long term precise radial velocity (RV) monitoring of the nearby star HD206893, as well as anomalies in the system proper motion, have suggested the presence of an additional, inner companion in the system. Here we describe the results of a multi-epoch search for the companion responsible for this RV drift and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we report a high significance detection of the companion HD206893c over three epochs, with clear evidence for Keplerian orbital motion. Our astrometry with ∌\sim50-100 ÎŒ\muarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7−1.0+1.2^{+1.2}_{-1.0} MJup_{\rm Jup} and an orbital separation of 3.53−0.06+0.08^{+0.08}_{-0.06} au for HD206893c. Our fits to the orbits of both companions in the system utilize both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore derive an age of 155±15155\pm15 Myr. We find that theoretical atmospheric/evolutionary models incorporating deuterium burning for HD206893c, parameterized by cloudy atmospheres provide a good simultaneous fit to the luminosity of both HD206893B and c. In addition to utilizing long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward to identify and characterize additional directly imaged planets. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&

    Low-wind-effect impact on Shack-Hartmann-based adaptive optics

    No full text
    Context. The low wind effect (LWE) occurs at the aperture of 8-meter class telescopes when the spiders holding the secondary mirror get significantly cooler than the air. The effect creates phase discontinuities in the incoming wavefront at the location of the spiders. Under the LWE, the wavefront residuals after correction of the adaptive optics (AO) are dominated by low-order aberrations, pistons, and tip-tilts, contained in the pupil quadrants separated by the spiders. Those aberrations, called petal modes, degrade the AO performances during the best atmospheric turbulence conditions. Ultimately, the LWE is an obstacle for high-contrast exoplanet observations at a small angular separation from the host star. Aims. We aim to understand why extreme AO with a Shack-Hartmann (SH) wavefront sensor fails to correct for the petal tip and tilt modes, while these modes imprint a measurable signal in the SH slopes. We explore if the petal tip and tilt content of the LWE can be controlled and mitigated without an additional wavefront sensor. Methods. We simulated the sensitivity of a single subaperture of a SH wavefront sensor in the presence of a phase discontinuity across this subaperture. We explored the effect of the most important parameters: the amplitude of the discontinuity, the spider thickness, and the field of view. We then performed end-to-end simulations to reproduce and explain the behavior of extreme AO systems based on a SH in the presence of the LWE. We then evaluated the efficiency of a new mitigation strategy by running simulations, including atmosphere and realistic LWE phase perturbations. Results. For realistic parameters (i.e. a spider thickness at 25% of a SH subaperture, and a field of view of 3.5λ/d), we find that the sensitivity of the SH to a phase discontinuity is dramatically reduced, or even reversed. Under the LWE, a nonzero curl path is created in the measured slopes, which transforms into vortex-structures in the residuals when the loop is closed. While these vortexes are easily seen in the residual wavefront and slopes, they cannot be controlled by the system. We used this understanding to propose a strategy for controlling the petal tip and tilt modes of the LWE by using the measurements from the SH, but excluding the faulty subapertures. Conclusions. The proposed mitigation strategy may be of use in all extreme AO systems based on SH for which the LWE is an issue, such as SPHERE and GRAVITY+

    First Light for GRAVITY Wide: Large Separation Fringe Tracking for the Very Large Telescope Interferometer

    No full text
    International audienceGRAVITY+ is the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) with wide-separation fringe tracking, new adaptive optics, and laser guide stars on all four 8~m Unit Telescopes (UTs), for ever fainter, all-sky, high contrast, milliarcsecond interferometry. Here we present the design and first results of the first phase of GRAVITY+, called GRAVITY Wide. GRAVITY Wide combines the dual-beam capabilities of the VLTI and the GRAVITY instrument to increase the maximum separation between the science target and the reference star from 2 arcseconds with the 8 m UTs up to several 10 arcseconds, limited only by the Earth's turbulent atmosphere. This increases the sky-coverage of GRAVITY by two orders of magnitude, opening up milliarcsecond resolution observations of faint objects, and in particular the extragalactic sky. The first observations in 2019 - 2022 include first infrared interferometry of two redshift z∌2z\sim2 quasars, interferometric imaging on the binary system HD 105913A, and repeated observations of multiple star systems in the Orion Trapezium Cluster. We find the coherence loss between the science object and fringe-tracking reference star well described by the turbulence of the Earth's atmosphere. We confirm that the larger apertures of the UTs result in higher visibilities for a given separation due to larger overlap of the projected pupils on sky and give predictions for visibility loss as a function of separation to be used for future planning

    First VLTI/GRAVITY Observations of HIP 65426 b: Evidence for a Low or Moderate Orbital Eccentricity

    No full text
    International audienceGiant exoplanets have been directly imaged over orders of magnitude of orbital separations, prompting theoretical and observational investigations of their formation pathways. In this paper, we present new VLTI/GRAVITY astrometric data of HIP 65426 b, a cold, giant exoplanet which is a particular challenge for most formation theories at a projected separation of 92 au from its primary. Leveraging GRAVITY's astrometric precision, we present an updated eccentricity posterior that disfavors large eccentricities. The eccentricity posterior is still prior dependent, and we extensively interpret and discuss the limits of the posterior constraints presented here. We also perform updated spectral comparisons with self-consistent forward-modeled spectra, finding a best-fit ExoREM model with solar metallicity and C/O = 0.6. An important caveat is that it is difficult to estimate robust errors on these values, which are subject to interpolation errors as well as potentially missing model physics. Taken together, the orbital and atmospheric constraints paint a preliminary picture of formation inconsistent with scattering after disk dispersal. Further work is needed to validate this interpretation. Analysis code used to perform this work is available on GitHub: https://github.com/sblunt/hip65426
    corecore