181 research outputs found
Quantum Games
In these lecture notes we investigate the implications of the identification
of strategies with quantum operations in game theory beyond the results
presented in [J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83,
3077 (1999)]. After introducing a general framework, we study quantum games
with a classical analogue in order to flesh out the peculiarities of game
theoretical settings in the quantum domain. Special emphasis is given to a
detailed investigation of different sets of quantum strategies.Comment: 13 pages (LaTeX), 3 figure
A Two-Player Game of Life
We present a new extension of Conway's game of life for two players, which we
call p2life. P2life allows one of two types of token, black or white, to
inhabit a cell, and adds competitive elements into the birth and survival rules
of the original game. We solve the mean-field equation for p2life and determine
by simulation that the asymptotic density of p2life approaches 0.0362.Comment: 7 pages, 3 figure
Electromagnetic superconductivity of vacuum induced by strong magnetic field: numerical evidence in lattice gauge theory
Using numerical simulations of quenched SU(2) gauge theory we demonstrate
that an external magnetic field leads to spontaneous generation of quark
condensates with quantum numbers of electrically charged rho mesons if the
strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV^2
or Bc =(1.56 \pm 0.13) 10^{16} Tesla. The condensation of the charged rho
mesons in strong magnetic field is a key feature of the magnetic-field-induced
electromagnetic superconductivity of the vacuum.Comment: 14 pages, 5 figures, 2 tables, elsarticle style; continuum limit is
analyzed, best fit parameters are presented in Table 2, published versio
Emotional Strategies as Catalysts for Cooperation in Signed Networks
The evolution of unconditional cooperation is one of the fundamental problems
in science. A new solution is proposed to solve this puzzle. We treat this
issue with an evolutionary model in which agents play the Prisoner's Dilemma on
signed networks. The topology is allowed to co-evolve with relational signs as
well as with agent strategies. We introduce a strategy that is conditional on
the emotional content embedded in network signs. We show that this strategy
acts as a catalyst and creates favorable conditions for the spread of
unconditional cooperation. In line with the literature, we found evidence that
the evolution of cooperation most likely occurs in networks with relatively
high chances of rewiring and with low likelihood of strategy adoption. While a
low likelihood of rewiring enhances cooperation, a very high likelihood seems
to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation
becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System
Hawks and Doves on Small-World Networks
We explore the Hawk-Dove game on networks with topologies ranging from
regular lattices to random graphs with small-world networks in between. This is
done by means of computer simulations using several update rules for the
population evolutionary dynamics. We find the overall result that cooperation
is sometimes inhibited and sometimes enhanced in those network structures, with
respect to the mixing population case. The differences are due to different
update rules and depend on the gain-to-cost ratio. We analyse and qualitatively
explain this behavior by using local topological arguments.Comment: 12 pages, 8 figure
Development of a unified web-based national HIV/AIDS information system in China
Background In the past, many data collection systems were in operation for different HIV/AIDS projects in China. We describe the creation of a unified, web-based national HIV/AIDS information system designed to streamline data collection and facilitate data use
The Algorithmic Origins of Life
Although it has been notoriously difficult to pin down precisely what it is
that makes life so distinctive and remarkable, there is general agreement that
its informational aspect is one key property, perhaps the key property. The
unique informational narrative of living systems suggests that life may be
characterized by context-dependent causal influences, and in particular, that
top-down (or downward) causation -- where higher-levels influence and constrain
the dynamics of lower-levels in organizational hierarchies -- may be a major
contributor to the hierarchal structure of living systems. Here we propose that
the origin of life may correspond to a physical transition associated with a
shift in causal structure, where information gains direct, and
context-dependent causal efficacy over the matter it is instantiated in. Such a
transition may be akin to more traditional physical transitions (e.g.
thermodynamic phase transitions), with the crucial distinction that determining
which phase (non-life or life) a given system is in requires dynamical
information and therefore can only be inferred by identifying causal
architecture. We discuss some potential novel research directions based on this
hypothesis, including potential measures of such a transition that may be
amenable to laboratory study, and how the proposed mechanism corresponds to the
onset of the unique mode of (algorithmic) information processing characteristic
of living systems.Comment: 13 pages, 1 tabl
Estimating the number of people living with HIV/AIDS in China: 2003–09
Background Before 2003, little was known about the scale of China’s HIV/AIDS epidemic. In 2003, the Chinese government produced national estimates with support from the Joint United Nations Programme on HIV/AIDS, the World Health Organization and the United States Centers for Disease Control and Prevention. Subsequent national estimation exercises were carried out in 2005, 2007 and 2009. We describe these estimation processes and present the results of China’s HIV/AIDS estimation exercises from 2003 to 2009
Does strong heterogeneity promote cooperation by group interactions?
Previous research has highlighted the importance of strong heterogeneity for
the successful evolution of cooperation in games governed by pairwise
interactions. Here we determine to what extent this is true for games governed
by group interactions. We therefore study the evolution of cooperation in the
public goods game on the square lattice, the triangular lattice and the random
regular graph, whereby the payoffs are distributed either uniformly or
exponentially amongst the players by assigning to them individual scaling
factors that determine the share of the public good they will receive. We find
that uniformly distributed public goods are more successful in maintaining high
levels of cooperation than exponentially distributed public goods. This is not
in agreement with previous results on games governed by pairwise interactions,
indicating that group interactions may be less susceptible to the promotion of
cooperation by means of strong heterogeneity as originally assumed, and that
the role of strongly heterogeneous states should be reexamined for other types
of games.Comment: 12 pages, 4 figures; accepted for publication in New Journal of
Physics [related work available at http://arxiv.org/abs/0708.1746 and
http://www.matjazperc.com/
- …