96 research outputs found

    A Probabilistic Framework for Security Scenarios with Dependent Actions

    Get PDF
    This work addresses the growing need of performing meaningful probabilistic analysis of security. We propose a framework that integrates the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. This allows us to perform probabilistic evaluation of attack–defense scenarios involving dependent actions. To improve the efficiency of our computations, we make use of inference algorithms from Bayesian networks and encoding techniques from constraint reasoning. We discuss the algebraic theory underlying our framework and point out several generalizations which are possible thanks to the use of semiring theory

    Computability of ordinary differential equations

    Get PDF
    In this paper we provide a brief review of several results about the computability of initial-value problems (IVPs) defined with ordinary differential equations (ODEs). We will consider a variety of settings and analyze how the computability of the IVP will be affected. Computational complexity results will also be presented, as well as computable versions of some classical theorems about the asymptotic behavior of ODEs.info:eu-repo/semantics/publishedVersio

    CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination

    Get PDF
    BACKGROUND: The functional role of ELR-positive CXC chemokines during viral-induced demyelination was assessed. Inoculation of the neuroattenuated JHM strain of mouse hepatitis virus (JHMV) into the CNS of susceptible mice results in an acute encephalomyelitis that evolves into a chronic demyelinating disease, modeling white matter pathology observed in the human demyelinating disease Multiple Sclerosis. METHODOLOGY/PRINCIPAL FINDINGS: JHMV infection induced the rapid and sustained expression of transcripts specific for the ELR+ chemokine ligands CXCL1 and CXCL2, as well as their binding receptor CXCR2, which was enriched within the spinal cord during chronic infection. Inhibiting CXCR2 signaling with neutralizing antiserum significantly (p<0.03) delayed clinical recovery. Moreover, CXCR2 neutralization was associated with an increase in the severity of demyelination that was independent of viral recrudescence or modulation of neuroinflammation. Rather, blocking CXCR2 was associated with increased numbers of apoptotic cells primarily within white matter tracts, suggesting that oligodendrocytes were affected. JHMV infection of enriched oligodendrocyte progenitor cell (OPC) cultures revealed that apoptosis was associated with elevated expression of cleaved caspase 3 and muted Bcl-2 expression. Inclusion of CXCL1 within JHMV infected cultures restricted caspase 3 cleavage and increased Bcl-2 expression that was associated with a significant (p<0.001) decrease in apoptosis. CXCR2 deficient oligodendrocytes were refractory to CXCL1 mediated protection from JHMV-induced apoptosis, readily activating caspase 3 and down regulating Bcl-2. CONCLUSION/SIGNIFICANCE: These findings highlight a previously unappreciated role for CXCR2 signaling in protecting oligodendrocyte lineage cells from apoptosis during inflammatory demyelination initiated by viral infection of the CNS

    Ischemia-Reperfusion Injury and Pregnancy Initiate Time-Dependent and Robust Signs of Up-Regulation of Cardiac Progenitor Cells

    Get PDF
    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease

    In Situ Dividing and Phagocytosing Retinal Microglia Express Nestin, Vimentin, and NG2 In Vivo

    Get PDF
    BACKGROUND: Following injury, microglia become activated with subsets expressing nestin as well as other neural markers. Moreover, cerebral microglia can give rise to neurons in vitro. In a previous study, we analysed the proliferation potential and nestin re-expression of retinal macroglial cells such as astrocytes and Müller cells after optic nerve (ON) lesion. However, we were unable to identify the majority of proliferative nestin(+) cells. Thus, the present study evaluates expression of nestin and other neural markers in quiescent and proliferating microglia in naïve retina and following ON transection in adult rats in vivo. METHODOLOGY/PRINCIPAL FINDINGS: For analysis of cell proliferation and cells fates, rats received BrdU injections. Microglia in retinal sections or isolated cells were characterized using immunofluorescence labeling with markers for microglia (e.g., Iba1, CD11b), cell proliferation, and neural cells (e.g., nestin, vimentin, NG2, GFAP, Doublecortin etc.). Cellular analyses were performed using confocal laser scanning microscopy. In the naïve adult rat retina, about 60% of resting ramified microglia expressed nestin. After ON transection, numbers of nestin(+) microglia peaked to a maximum at 7 days, primarily due to in situ cell proliferation of exclusively nestin(+) microglia. After 8 weeks, microglia numbers re-attained control levels, but 20% were still BrdU(+) and nestin(+), although no further local cell proliferation occurred. In addition, nestin(+) microglia co-expressed vimentin and NG2, but not GFAP or neuronal markers. Fourteen days after injury and following retrograde labeling of retinal ganglion cells (RGCs) with Fluorogold (FG), nestin(+)NG2(+) microglia were positive for the dye indicating an active involvement of a proliferating cell population in phagocytosing apoptotic retinal neurons. CONCLUSIONS/SIGNIFICANCE: The current study provides evidence that in adult rat retina, a specific resident population of microglia expresses proteins of immature neural cells that are involved in injury-induced cell proliferation and phagocytosis while transdifferentiation was not observed

    Ectopic pregnancy secondary to in vitro fertilisation-embryo transfer: pathogenic mechanisms and management strategies

    Get PDF

    Locally Adapted Tetrahedral Meshes Using Bisection

    No full text
    . We present an algorithm for the construction of locally adapted conformal tetrahedral meshes. The algorithm is based on bisection of tetrahedra. A new data structure is introduced, which simplifies both the selection of the refinement edge of a tetrahedron and the recursive refinement to conformity of a mesh once some tetrahedra have been bisected. We prove that repeated application of the algorithm leads to only finitely many tetrahedral shapes up to similarity, and bound the amount of additional refinement that is needed to achieve conformity. Numerical examples of the effectiveness of the algorithm are presented. 1. Introduction. The generation of locally adapted conforming tetrahedral meshes is an important component of many modern algorithms, for example, in the finite element solution of partial differential equations. Typically, such meshes are produced by starting with a coarse tetrahedral mesh, selecting certain elements for refinement, somehow refining those elements and ot..
    • …
    corecore