70 research outputs found

    Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation

    Get PDF
    An innovative use of a thermoelectric material (BiCuSeO) as a support and promoter of catalysis for CO2 hydrogenation is reported here. It is proposed that the capability of thermoelectric materials to shift the Fermi level and work function of a catalyst lead to an exponential increase of catalytic activity for catalyst particles deposited on its surface. Experimental results show that the CO2 conversion and CO selectivity are increased significantly by a thermoelectric Seebeck voltage. This suggests that the thermoelectric effect can not only increase the reaction rate but also change chemical equilibrium, which leads to the change of thermodynamic equilibrium for the conversion of CO2 in its hydrogenation reactions. It is also shown that this thermoelectric promotion of catalysis enables BiCuSeO oxide itself to have a high catalytic activity for CO2 hydrogenation. The generic nature of the mechanism suggests the possibility that many catalytic chemical reactions can be tuned in situ to achieve much higher reaction rates, or at lower temperatures, or have better desired selectivity through changing the backside temperature of the thermoelectric support

    Synthesis, characterisation and study of magnetocaloric effects (enhanced and reduced) in manganate perovskites

    Get PDF
    The effect of the A-site dopant ionic radii on the observed magnetocaloric effect (MCE) exhibited by three different families of manganese-based perovskites was investigated using both induction heating and SQUID magnetometry measurements. The doped perovskites La1-xSrxMnO3 (LSMO), La1-xCaxMnO3 (LCMO), and La1-xBaxMnO3 (LBMO) (x = 0.25, 0.35, 0.4) were prepared using a modified peroxide sol-gel synthesis. This method has not been previously used for the synthesis of LCMO or LBMO. Structural characterisation of the agglomerates of magnetic nanoparticles (MNP) for each material was carried out using SEM, XRD and IR spectroscopy. Magnetic heating was observed for materials with larger A-site dopant radii relative to La3+; LSMO40 and LBMO40, with average SARs obtained of 51.5 Wg-1Mn and 33.8 Wg-1Mn respectively. However, reduced magnetic heating effects were observed for smaller A-site dopant radii relative to La3+ (LCMO). In fact, the calculated Specific Absorption Rate for LCMO40 of 14.72 Wg-1Mn is half that of the blank
    • …
    corecore