39 research outputs found

    CommsChem

    Get PDF
    Connecting chemical properties to various wine characteristics is of great interest to the science of olfaction as well as the wine industry. We explored whether Bordeaux wine chemical identities and vintages (harvest year) can be inferred from a common and affordable chemical analysis, namely, a combination of gas chromatography (GC) and electron ionization mass spectrometry. Using 12 vintages (within the 1990–2007 range) from 7 estates of the Bordeaux region, we report that, remarkably, nonlinear dimensionality reduction techniques applied to raw gas chromatograms recover the geography of the Bordeaux region. Using machine learning, we found that we can not only recover the estate perfectly from gas chromatograms, but also the vintage with up to 50% accuracy. Interestingly, we observed that the entire chromatogram is informative with respect to geographic location and age, thus suggesting that the chemical identity of a wine is not defined by just a few molecules but is distributed over a large chemical spectrum. This study demonstrates the remarkable potential of GC analysis to explore fundamental questions about the origin and age of wine. © 2023, The Author(s)

    Recruitment of heterosexual couples in public health research: a study protocol

    Get PDF
    BACKGROUND: Public health research involving social or kin groups (such as sexual partners or family members), rather than samples of unrelated individuals, has become more widespread in response to social ecological approaches to disease treatment and prevention. This approach requires the development of innovative sampling, recruitment and screening methodologies tailored to the study of related individuals. METHODS: In this paper, we describe a set of sampling, recruitment and screening protocols developed to enlist urban, drug-using, heterosexual couples into a public health research study. This population is especially hard to reach because they are engaged in illegal and/or stigmatized behaviors. The protocols were designed to integrate adaptive sampling, street- and referral-based recruitment, and screening procedures to verify study eligibility and relationship status. DISCUSSION: Recruitment of heterosexual couples through one partner, preferably the female, can be an effective enlistment technique. Verification of relationship status is an important component of dyadic research. Comparison of parallel questionnaires administered to each member of a dyad can aid in the assessment of relationship status. However, multiple independent sources of information should be used to verify relationship status when available. Adaptive sampling techniques were effective in reaching drug-using heterosexual couples in an urban setting, and the application of these methods to other groups of related individuals in clinical and public health research may prove to be useful. However, care must be taken to consider potential sources of sampling bias when interpreting and generalizing study results

    Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice

    Get PDF
    International audienceINTRODUCTION: Novel adjuvant therapies are needed to prevent metastatic relapses in HER2-expressing breast cancer. Here, we tested whether trastuzumab-selected single-chain Fv (scFv) could be used to develop an anti-idiotype-based vaccine to inhibit growth of HER2-positive tumor cells in vitro and in vivo through induction of long-lasting HER-specific immunity. METHODS: BALB/c mice were immunized with anti-trastuzumab anti-idiotype (anti-Id) scFv (scFv40 and scFv69), which mimic human HER2. Their sera were assessed for the presence of HER2-specific Ab1' antibodies and for their ability to reduce viability of SK-OV-3 cells, a HER2-positive cancer cell line, in nude mice. MMTV.f.huHER2(Fo5) transgenic mice were immunized with scFv40 and scFv69 and, then, growth inhibition of spontaneous HER2-positive mammary tumors, humoral response, antibody isotype as well as splenocyte secretion of IL2 and IFN-γ were evaluated. RESULTS: Adoptively-transferred sera from BALB/c mice immunized with scFv40 and scFv69 contain anti-HER2 Ab1' antibodies that can efficiently inhibit growth of SK-OV-3 cell tumors in nude mice. Similarly, prophylactic vaccination with anti-Id scFv69 fully protects virgin or primiparous FVB-MMTV.f.huHER2(Fo5) females from developing spontaneous mammary tumors. Moreover, such vaccination elicits an anti-HER2 Ab1' immune response together with a scFv69-specific Th1 response with IL2 and IFN-γ cytokine secretion. CONCLUSIONS: Anti-trastuzumab anti-Id scFv69, used as a therapeutic or prophylactic vaccine, protects mice from developing HER2-positive mammary tumors by inducing both anti-HER2 Ab1' antibody production and an anti-HER2 Th2-dependent immune response. These results suggest that scFv69 could be used as an anti-Id-based vaccine for adjuvant therapy of patients with HER2-positive tumors to reverse immunological tolerance to HER2

    Critical Scattering and Dynamical Scaling in an Heisenberg Ferromagnet Neutron Spin Echo versus Renormalization Group Theory

    No full text
    4 pages, 5 figures, letter submitted to Phys.Rev. Lett., 03/26/2007High resolution Neutron Spin Echo (NSE) spectroscopy was used to investigate the dynamics of an 3D Heisenberg ferromagnet in the exchange-controlled regime over a broad range of temperatures and momentum transfer. These results allow for the first time an extensive comparison between the experimental dynamical critical behavior and the predictions of the Renormalization Group (RG) theory. The agreement is exhaustive and surprising as the RG theory accounts not only for the critical relaxation but also for the shape crossover towards an exponential diffusive relaxation when moving from the critical to the hydrodynamic regime above TCT_C

    The squirrel monkey model in clinical neuroscience

    No full text
    International audienceClinical neuroscience research relying on animal models brought valuable translational insights into the function and pathologies of the human brain. The anatomical, physiological, and behavioural similarities between humans and mammals have prompted researchers to study cerebral mechanisms at different levels to develop and test new treatments. The vast majority of biomedical research uses rodent models, which are easily manipulable and have a broadly resembling organisation to the human nervous system but cannot satisfactorily mimic some disorders. For these disorders, macaque monkeys have been used as they have a more comparable central nervous system. Still, this research has been hampered by limitations, including high costs and reduced samples. This review argues that a squirrel monkey model might bridge the gap by complementing translational research from rodents, macaque, and humans. With the advent of promising new methods such as ultrasound imaging, tool miniaturisation, and a shift towards open science, the squirrel monkey model represents a window of opportunity that will potentially fuel new translational discoveries in the diagnosis and treatment of brain pathologies

    Zebrafish snai2 mutants fail to phenocopy morphant phenotypes.

    No full text
    Snail2 is a zinc-finger transcription factor best known to repress expression of genes encoding cell adherence proteins to facilitate induction of the epithelial-to-mesenchymal transition. While this role has been best documented in the developmental migration of the neural crest and mesoderm, here we expand on previously reported preliminary findings that morpholino knock-down of snai2 impairs the generation of hematopoietic stem cells (HSCs) during zebrafish development. We demonstrate that snai2 morphants fail to initiate HSC specification and show defects in the somitic niche of migrating HSC precursors. These defects include a reduction in sclerotome markers as well as in the Notch ligands dlc and dld, which are known to be essential components of HSC specification. Accordingly, enforced expression of the Notch1-intracellular domain was capable of rescuing HSC specification in snai2 morphants. To parallel our approach, we obtained two mutant alleles of snai2. In contrast to the morphants, homozygous mutant embryos displayed no defects in HSC specification or in sclerotome development, and mutant fish survive into adulthood. However, when these homozygous mutants were injected with snai2 morpholino, HSCs were improperly specified. In summary, our morpholino data support a role for Snai2 in HSC development, whereas our mutant data suggest that Snai2 is dispensable for this process. Together, these findings further support the need for careful consideration of both morpholino and mutant phenotypes in studies of gene function

    Direct Synthesis of Highly Conductive tert-Butylthiol-Capped CuInS2 Nanocrystals

    No full text
    International audiencetert-butylthiol (tBuSH) is used as the sulfur source, surface ligand and co-solvent in the synthesis of CuInS2 nanocrystals (NCs). The presented method gives direct access to short-ligand-capped NCs without post-synthetic ligand exchange. The obtained 5nm CuInS2 NCs crystallize in the cubic sphalerite phase with space group F-43m and a lattice parameter a=5.65 angstrom. Their comparably large optical and electrochemical band gap of 2.6-2.7eV is attributed to iodine incorporation into the crystal structure as reflected by the composition Cu1.04In0.96S1.84I0.62 determined by EDX. Conductivity measurements on thin films of the tBuSH-capped NCs result in a value of 2.5(.)10(-2)Sm(-1), which represents an increase by a factor of 400 compared to established dodecanethiol-capped CuInS2 NCs
    corecore