24 research outputs found

    Evolution and rapid spread of a reassortant A(H3N2) virus that predominated the 2017-2018 influenza season

    Get PDF
    The 2017-2018 North American influenza season caused more hospitalizations and deaths than any year since the 2009 H1N1 pandemic. The majority of recorded influenza infections were caused by A(H3N2) viruses, with most of the virus's North American diversity falling into the A2 clade. Within A2, we observe a subclade which we call A2/re that rose to comprise almost 70 per cent of A(H3N2) viruses circulating in North America by early 2018. Unlike most fast-growing clades, however, A2/re contains no amino acid substitutions in the hemagglutinin (HA) segment. Moreover, hemagglutination inhibition assays did not suggest substantial antigenic differences between A2/re viruses and viruses sampled during the 2016-2017 season. Rather, we observe that the A2/re clade was the result of a reassortment event that occurred in late 2016 or early 2017 and involved the combination of the HA and PB1 segments of an A2 virus with neuraminidase (NA) and other segmentsa virus from the clade A1b. The success of this clade shows the need for antigenic analysis that targets NA in addition to HA. Our results illustrate the potential for non-HA drivers of viral success and necessitate the need for more thorough tracking of full viral genomes to better understand the dynamics of influenza epidemics

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions.

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    A multiple species approach to biomass production from native herbaceous perennial feedstocks

    Full text link

    Two years of genomic surveillance in Belgium during the SARS-CoV-2 pandemic to attain country-wide coverage and monitor the introduction and spread of emerging variants

    No full text
    An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country’s genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available

    Two years of genomic surveillance in Belgium during the SARS-CoV-2 pandemic to attain country-wide coverage and monitor the introduction and spread of emerging variants

    No full text
    An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country’s genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available

    Two Years of Genomic Surveillance in Belgium during the SARS-CoV-2 Pandemic to Attain Country-Wide Coverage and Monitor the Introduction and Spread of Emerging Variants.

    Full text link
    peer reviewedAn adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available

    A multiple species approach to biomass production from native herbaceous perennial feedstocks

    Get PDF
    Due to the rapid rate of worldwide consumption of nonrenewable fossil fuels, production of biofuels from cellulosic sources is receiving increased research emphasis. Here, we review the feasibility to produce lignocellulosic biomass on marginal lands that are not well-suited for conventional crop production. Large areas of these marginal lands are located in the central prairies of North America once dominated by tallgrass species. In this article, we review the existing literature, current work, and potential of two native species of the tallgrass prairie, prairie cordgrass (Spartina pectinata), and little bluestem (Schizachyrium scoparium) as candidates for commercial production of biofuel. Based on the existing literature, we discuss the need to accelerate research in the areas of agronomy, breeding, genetics, and potential pathogens. Cropping systems based on maintaining biodiversity across landscapes are essential for a sustainable production and to mitigate impact of pathogens and pests
    corecore