21 research outputs found
Road Sign Board Direction and Location Extraction and Recognition for Autonomous Vehicle.
The problem of direction and location identification is very important in technologies used for Autonomous vehicles. while the navigation systems are that they cannot cover all areas due to a lack of signals or changes made on routes due to maintenance or upgrades. This research will focus on recognizing the sign and extracting address location names and directions from road signs. Moreover, it will help better identify road exits and lane directions for better route planning. In this paper we use YOLOv5 to identify the road board sign location and direction. Then extract the direction of each address location that are included in the road board sign and inform the car about the direction because autonomous car has no any driver so the car must decide by itself witch direction to choose to get the goal address location. This system can be used to continuously cheek the frames of the video that is taken by the carâs camera for road sign boards and analyses the image to find the direction of each location that are explained inside road sign board on the road. The proposed system consists of a camera mounted on top of the front mirror of the vehicle, and also a computer to run the recorded video on the system. In experiments, yolov5 framework achieves the best performance of 98.76% mean average precision (mAP) at Intersection over Union (IoU) threshold of 0.5, evaluated on our new developed dataset. And 91.31% on different IoU thresholds, ranging from 0.5 to 0.95
Deep Learning Based Car Damage Classification and Cost Estimation
Due to the increasing number of people driving cars, the number of insurance claims has also increased. This process involves the manual assessment of the vehicle by an insurance company's service engineer, as well as the physical inspection by a licensed insurance company representative. An end-to-end solution has been proposed that would allow the customer and the insurance company to automate the process of recognizing the damaged area in the vehicles and estimating the cost of the damage. It would allow them to get a better understanding of the condition of the vehicle. For this purpose, A deep learning, Mask Region-based Convolutional Neural Network (Mask RCNN) model was utilized in this work to classify vehicle damages costs. Two Mask RCNN models were utilized, the first one was used to detect the sides of the vehicle, which will affect damage cost estimation and the second was used to find the area of the damage. The Experimental work shows that the proposed model gives reasonable results to estimate the cost of the damage. We achieve an accuracy of 98.5% with the combination of the two Mask RCNN models. And showed that Mask RCNN has a promising result to detect the area of the damage in the car
Matförgiftningar och dess orsaker i Sverige under perioden 2012â2021
Varje Ă„r rapporterar Sveriges kommuner och FolkhĂ€lsomyndigheten ca 2000â3000 fall av matförgiftning till Livsmedelsverket. Livsmedelsverkets uppskattning Ă€r att ca en halv miljon svenskar drabbas per Ă„r.
Den hÀr studien syftar till att undersöka matförgiftningar under de senaste 10 Ären. Genom att undersöka förekomst av matförgiftningar, de vanligaste smittÀmnena, de vanligaste utpekade smittkÀllorna och bidragande faktorer kan vi dra slutsatser om hur matförgiftningar kan minimeras. Denna studie baseras pÄ data som Livsmedelsverket samlat in under de senaste tio Ären. Informationen inkluderar rapporter av bekrÀftade matförgiftningar som rapporterats in av kontrollmyndigheter till livsmedelsverket och kompletterats med resultatet av utredningar som utförs av Livsmedelsverket och FolkhÀlsomyndigheten i samrÄd.
Resultatet visar att totalt antal rapporterade matförgiftningar för perioden 2012-2021 var 3643 med 26 847 fall. För de flesta var orsak âOkĂ€ndâ (2962 matförgiftningar), dĂ€rnĂ€st kommer Calicivirus för 234 matförgiftningar, följd av Histamin för 111 matförgiftningar, följd av Salmonella som rapporterades för 67 matförgiftningar.
âKycklingkött och produkter dĂ€ravâ var den livsmedelskategorin som rapporterades ha orsakat flest antal till matförgiftningars, följd av livsmedelskategorin âSammansatta mĂ„ltid (ej buffĂ©)â t.ex. kebabtallrik, hamburgare, eller kyckling med rissoto .
De flesta rapporterade matförgiftningarna har skett under vintern och sommaren. âOlĂ€mplig temperaturâ var den mesta rapporterade orsaken som anges för 616 matförgiftningar, följd av âDĂ„lig hygien hos personalenâ som anges för 523 matförgiftningar, följd av âKontamineringâ som anges för 453 matförgiftningar. Sommaren var den Ă„rstiden dĂ€r utredare kunde lĂ€tt konstatera vilka faktorer kan betraktas som bidragande pga Ordinarie personal brukar inte vara pĂ„ plats under sommaren och ersĂ€tts med vikarier. Flera mobila verksamheter, sĂ€songsanlĂ€ggningar dyker upp. Det kan göra att dessa anlĂ€ggningar inte har tydliga rutiner och inte följer hygien praxis.Every year, Sweden's municipalities and the Swedish Public Health Agency report approximately 2,000â3,000 cases of food poisoning to the Swedish Food Agency. The Swedish Food Agency has estimated that about a half million people in Sweden are affected every year.
This study aims to investigate food poisoning over the past 10 years. By examining the occurrence of food poisoning, most common causative agents, most commonly identified sources of infection and contributing factors, to conclude how to minimize food poisoning.
This study is based on data collected by the Swedish Food Agency for the past ten years. The data is about confirmed food poisoning reported by the control authorities to the Swedish Food Agency and completed with the results of investigations carried out by Swedish Food Agency and Swedish Public Health Agency in consultation.
The results showed that the total number of reported food poisonings for the period 2012-2021 was 3643 with 26,847 cases. For most, the cause was "Unknown" (2962 food poisoning), followed by Calicivirus for 234 food poisoning, followed by Histamine for 111 food poisoning, followed by Salmonella, which was reported for 67 food poisoning.
"Poultry meat and products thereof" was the common food category reported in most cases, followed by the food category "Compound meal (not buffet)" e.g. kebab plate, burgers, or Chicken with irssoto.
Winter and summer are the seasons when most reported food poisonings have occurred.
Most reported food poisonings occurred during the winter and summer. "Inappropriate temperature" was the most reported factor reported for 616 food poisoning, followed by "Poor personal hygiene" reported for 523 food poisoning, followed by "Contamination" reported for 453 food poisoning. Summer was the time of year when investigators could easily ascertain which factors could be considered as contributing because Statutory staff are usually not in place during the summer and are replaced by replacement staff. Several mobile and seasonal installations are emerging. This may mean that these establishments do not have clear rutines and do not follow hygiene practices
Utbildning och bedömning av svensk teckensprÄksförmÄga
Sign language is used widely around the world as a first language for those that are unable to use spoken language and by groups of people that have a disability which precludes them from using spoken language (such as a hearing impairment). The importance of effective learning of sign language and its applications in modern computer science has grown widely in the modern aged society and research around sign language recognition has sprouted in many different directions, some examples using hidden markov models (HMMs) to train models to recognize different sign language patterns (Swedish sign language, American sign language, Korean sign language, German sign language and so on). This thesis project researches the assessment and skill efficiency of using a simple video game to learn Swedish sign language for children in the ages within the range of 10 to 11 with no learning disorders, or any health disorders. During the experimental testing, 38 children are divided into two equally sized groups of 19 where each group plays a sign language video game. The context of the video game is the same for both groups, where both listened to a 3D avatar speak to them using both spoken language and sign language. The first group played the game and answered questions given to them by using sign language, whereas the other group answered questions given to them by clicking on an alternative on the video game screen. A week after the children have played the video game, the sign language skills that they have acquired from playing the video game are assessed by simple questions where they are asked to provide some of the signs that they saw during the duration of the video game. The main hypothesis of the project is that the group of children that answered by signing outperforms the other group, in both remembering the signs and executing them correctly. A statistical null hypothesis test is performed on this hypothesis, in which the main hypothesis is confirmed. Lastly, discussions for future research within sign language assessment using video games is described in the final chapter of the thesis.TeckensprÄk anvÀnds i stor grad runt om i vÀrlden som ett modersmÄl för dom som inte kan anvÀnda vardagligt talssprÄk och utav grupper av personer som har en funktionsnedsÀttning (t.ex. en hörselskada). Betydelsen av effektivt lÀrande av teckensprÄk och dess tillÀmpningar i modern datavetenskap har ökat i stor utstrÀckning i det moderna samhÀllet, och forskning kring teckensprÄklig igenkÀnning har spirat i mÄnga olika riktningar, ett exempel Àr med hjÀlp av statistika modeller sÄsom dolda markovmodeller (eng. Hidden markov models) för att trÀna modeller för att kÀnna igen olika teckensprÄksmönster (bland dessa ingÄr Svenskt teckensprÄk, Amerikanskt teckensprÄk, Koreanskt teckensprÄk, Tyskt teckensprÄk med flera). Denna rapport undersöker bedömningen och skickligheten av att anvÀnda ett enkelt teckensprÄksspel som har utvecklats för att lÀra ut enkla Svenska teckensprÄksmönster för barn i Äldrarna 10 till 11 Ärs Älder som inte har nÄgra inlÀrningssjukdomar eller nÄgra problem med allmÀn hÀlsa. Under projektets experiment delas 38 barn upp i tvÄ lika stora grupper om 19 i vardera grupp, dÀr varje grupp kommer att fÄ spela ett teckensprÄksspel. Sammanhanget för spelet Àr detsamma för bÄda grupperna, dÀr de fÄr höra och se en tredimensionell figur (eng. 3D Avatar) tala till dom med bÄde talssprÄk och teckensprÄk. Den första gruppen spelar spelet och svarar pÄ frÄgor som ges till dem med hjÀlp av teckensprÄk, medan den andra gruppen svarar pÄ frÄgor som ges till dem genom att klicka pÄ ett av fem alternativ som finns pÄ spelets skÀrm. En vecka efter att barnen har utfört experimentet med teckensprÄksspelet bedöms deras teckensprÄkliga fÀrdigheter som de har fÄtt frÄn spelet genom att de ombeds Äteruppge nÄgra av de tecknena som de sÄg under spelets varaktighet. Rapportens hypotes Àr att de barn som tillhör gruppen som fick ge teckensprÄk som svar till frÄgorna som stÀlldes övertrÀffar den andra gruppen, genom att bÄde komma ihÄg tecknena och Äteruppge dom pÄ korrekt sÀtt. En statistisk hypotesprövning utförs pÄ denna hypotes, dÀr denna i sin tur bekrÀftas. Slutligen beskrivs det i rapportens sista kapitel om framtida forskning inom teckensprÄksbedömning med tv spel och deras effektivitet
Effektiva Lagringsmetoder för Glesa Matriser
Sparse matrices are often used in numerical algorithms that solve linear equation systems. Many methods for storing sparse matrices have been proposed and implemented during the years. These methods focus primarily on minimizing the total memory consumption and the time that it takes to store a sparse matrix. This report researches the available storage methods for sparse unstructured matrices. The formats that are researched and implemented are COO, CRS and ELL. The comparisons between the formats are made based on the storage memory and time for the sparse matrices with different filling ratios. A numerical algorithm has also been implemented to study the time it takes to solve a sparse matrix with one of the available storage formats, ELL. The results show that the CRS format outperform the other formats in the storage of a sparse matrix. It is concluded that there are storage methods for sparse matrices that avoid taking up unnecessary memory space, simultaneously preserving the matrix structure and doing so within a reasonable time
SprÄkutvecklande arbetssÀtt i förskolan : En kvalitativ fÀltstudie kring tvÄ olika förskolor och deras sprÄkutvecklande arbetsÀtt
The aim of this study was to examine how the activities of two preschools develop the language in matter of the teacherâs work of procedure. The following research questions were essential for the survey and therefore formed the basis of the examination: How do the teachers in both preschools work in a language evolving way? What significance does the environment have for the language development? Are there similarities and differences between the preschools in their language development approach? The study is based on a qualitative method, where the teachers of both preschools were interviewed with the purpose of obtaining information. The teacherâs statements and interviews were analyzed in relation to previous research, where the theories of different writers form the base of the theoretical connection to the study. The teachers view in developing the language regarding to their aspirations in measuring the language an important position in their operation, can be portraied as the conclusions of this study. Both preschools share a common view that the linguistic development is of great importance and should for that reason be highlighted as well as emphasized in the teachers working methods. However, the teachers in both preschools differ in their view considering language development due to their different ideas of witch working methods best stimulate the students linguistic abilities to development. The preschools working methods can be seen from a positive point of view and also from a critical one in relation to the examination, where the teacherâs interviews were analyzed and discussed. Accordingly, the teachers in both preschools aspire to achieve the best results for language development
JÀmförelse mellan mammografiprojektionerna cranio-caudal och medial-lateral oblique för att diagnostisera bröstcancertumörer med maskininlÀrning
Breast cancer is one of the leading causes of death among women. However, an early detection of the disease has been shown to significantly improve the chances of a successful treatment. Hence, there is a great effort in developing modern Computer-aided detection (CAD) technology by making use of deep learning architectures, such as Convolutional Neural Networks (CNNs). This project investigates how the performance of deep learning classification differ between Craniocaudal (CC) and Mediolateral Oblique (MLO) views when diagnosing breast cancer masses from mammography images using the CNN model ResNet-50. Cropped images from the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) dataset was used. In order to compare the difference between the CC view and the MLO view in terms of performance three different ResNet-50 models were trained. One model trained on a combination of the two views, and one model for each view separately. This study uses binary classification with the labels benign and malignant. The models exhibited signs of overfitting, resulting in test accuracies ranging between 61% and 66%, suggesting that none of the models performed adequately for practical application in breast cancer diagnosis. Although low performance, the results revealed a notable correlation, with the mediolateral oblique (MLO) view demonstrating superiority over the craniocaudal (CC) view. This indicates that the MLO view performs better than the CC view when diagnosing breast cancer masses from the CBIS-DDSM dataset using ResNet-50.Bröstcancer Àr en av de frÀmsta dödsorsakerna bland kvinnor. En tidig upptÀckt av sjukdomen har dock visat sig avsevÀrt förbÀttra chanserna för en lyckad behandling. För att möjliggöra tidigare upptÀckt utvecklas moderna datorsstödda detektionsteknologier (CAD) med hjÀlp av djupinlÀrningsarkitekturer, sÄsom konvolutionella neurala nÀtverk (CNNs). Detta projekt undersöker skillnaden mellan att anvÀnda projektionerna cranio-caudal (CC) och medial-lateral oblique (MLO) vid diagnostiseringen av bröstcancer-tumörer med hjÀlp av CNN-modellen ResNet-50. Beskurna bilder frÄn Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) anvÀndes i denna studie. För att kunna jÀmföra de tvÄ olika projektionerna trÀnades tre olika ResNet-50-modeller: en pÄ en kombination av bÄda projektionerna, en pÄ enbart CC-bilder och en pÄ enbart MLO-bilder. Studien anvÀnde binÀr klassificering av tumörerna med klasserna godartad och elakartad. Modellerna visade tecken pÄ överanpassning, vilket resulterade i testnoggrannhet mellan 61% och 66%. Detta indikerar att ingen av modellerna presterar tillrÀckligt vÀl för att praktiskt kunna anvÀndas vid diagnostisering av bröstcancer. Trots den lÄga prestandan visade resultaten en mÀrkbar korrelation dÀr MLO-projektioner visade sig vara överlÀgsna jÀmfört med CC-projektioner. Detta tyder pÄ att MLO presterar bÀttre Àn CC vid diagnostisering av bröstcancertumörer frÄn mammografibilder frÄn CBIS-DDSM med anvÀndning av ResNet-50
JÀmförelse mellan mammografiprojektionerna cranio-caudal och medial-lateral oblique för att diagnostisera bröstcancertumörer med maskininlÀrning
Breast cancer is one of the leading causes of death among women. However, an early detection of the disease has been shown to significantly improve the chances of a successful treatment. Hence, there is a great effort in developing modern Computer-aided detection (CAD) technology by making use of deep learning architectures, such as Convolutional Neural Networks (CNNs). This project investigates how the performance of deep learning classification differ between Craniocaudal (CC) and Mediolateral Oblique (MLO) views when diagnosing breast cancer masses from mammography images using the CNN model ResNet-50. Cropped images from the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) dataset was used. In order to compare the difference between the CC view and the MLO view in terms of performance three different ResNet-50 models were trained. One model trained on a combination of the two views, and one model for each view separately. This study uses binary classification with the labels benign and malignant. The models exhibited signs of overfitting, resulting in test accuracies ranging between 61% and 66%, suggesting that none of the models performed adequately for practical application in breast cancer diagnosis. Although low performance, the results revealed a notable correlation, with the mediolateral oblique (MLO) view demonstrating superiority over the craniocaudal (CC) view. This indicates that the MLO view performs better than the CC view when diagnosing breast cancer masses from the CBIS-DDSM dataset using ResNet-50.Bröstcancer Àr en av de frÀmsta dödsorsakerna bland kvinnor. En tidig upptÀckt av sjukdomen har dock visat sig avsevÀrt förbÀttra chanserna för en lyckad behandling. För att möjliggöra tidigare upptÀckt utvecklas moderna datorsstödda detektionsteknologier (CAD) med hjÀlp av djupinlÀrningsarkitekturer, sÄsom konvolutionella neurala nÀtverk (CNNs). Detta projekt undersöker skillnaden mellan att anvÀnda projektionerna cranio-caudal (CC) och medial-lateral oblique (MLO) vid diagnostiseringen av bröstcancer-tumörer med hjÀlp av CNN-modellen ResNet-50. Beskurna bilder frÄn Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) anvÀndes i denna studie. För att kunna jÀmföra de tvÄ olika projektionerna trÀnades tre olika ResNet-50-modeller: en pÄ en kombination av bÄda projektionerna, en pÄ enbart CC-bilder och en pÄ enbart MLO-bilder. Studien anvÀnde binÀr klassificering av tumörerna med klasserna godartad och elakartad. Modellerna visade tecken pÄ överanpassning, vilket resulterade i testnoggrannhet mellan 61% och 66%. Detta indikerar att ingen av modellerna presterar tillrÀckligt vÀl för att praktiskt kunna anvÀndas vid diagnostisering av bröstcancer. Trots den lÄga prestandan visade resultaten en mÀrkbar korrelation dÀr MLO-projektioner visade sig vara överlÀgsna jÀmfört med CC-projektioner. Detta tyder pÄ att MLO presterar bÀttre Àn CC vid diagnostisering av bröstcancertumörer frÄn mammografibilder frÄn CBIS-DDSM med anvÀndning av ResNet-50