65 research outputs found

    Bromidobis(1,10-phenanthroline-κ2 N,N′)copper(II) dicyanamidate

    Get PDF
    The title compound, [CuBr(C12H8N2)2][N(CN)2], is formed of discrete [CuBr(phen)2]+ complex cations and uncoordinated [N(CN)2]− anions (phen is 1,10-phenanthroline). The Cu atom is five-coordinated in a distorted trigonal-bipyramidal geometry by two phen mol­ecules and one bromide ligand, which coordinates in the equatorial plane at a distance of 2.5228 (4) Å and lying along with the Cu and the amide N atoms on a twofold rotation axis. The two axial Cu—N distances [1.9926 (15) Å] are slightly shorter than the two equatorial Cu—N bonds [2.0979 (15) Å]. The structure is stabilized by a weak C—H⋯N hydrogen bond, with a cyanide N atom of the dicyanamide ligand as an acceptor, and π–π inter­actions between nearly parallel phenyl and pyridine rings of two adjacent phen mol­ecules [centroid–centroid distance = 3.589 (1) Å], and between π electrons of the dicyanamide anion and the pyridine ring [N⋯Cg(pyridine) = 3.511 (3) Å; C—N⋯Cg(pyridine) = 80.2 (2)°]

    Bis(4,7-dichloro-1,10-phenanthroline-κ2 N,N′)bis­(dicyanamido-κN)copper(II)

    Get PDF
    In the title compound, [Cu(C2N3)2(C12H6Cl2N2)2], the CuII atom is coordinated by two chelating 4,7-dichloro-1,10-phenanthroline (4,7-Cl-phen) ligands and two dicyanamide (dca) ligands in a cis arrangement, forming a distorted octa­hedral geometry. The equatorial plane is occupied by three N atoms from two 4,7-Cl-phen ligands and one N atom from a dca ligand at shorter Cu—N distances. Due to the Jahn–Teller effect, the axial positions are occupied by a 4,7-Cl-phen N atom and a dca N atom at longer Cu—N distances. The dca ligands are nearly planar, with a maximum deviations of 0.006 (1) Å. The crystal structure is stabilized by weak C—H⋯N hydrogen bonds, with cyanide N atoms as acceptors, and π–π inter­actions between adjacent phenyl rings [centroid–centroid distance = 3.725 (3) Å]

    Heart rate variability analysis

    Get PDF
    Táto bakalářské práce se zabývá realizací online analýzy variability srdečního rytmu (HRV) v programovacím prostředí LabVIEW 2010. Hlavní část programu tvoří zpracování vstupního signálu získaného snímačem R-piku firmy Vernier a jeho následná časová, frekvenční a nelineární analýza. Další části práce je manuál obsahující popis použitých komponentů a návod na vytvoření výsledného programu. Výsledky testovaného programu jsou reprezentované na obrázcích.The topic of this bachelor’s thesis is online analysis the heart rate variability (HRV) using the programming environment LabVIEW 2010. The main part of proposed software is processing the input signal obtained by R-peak sensor developed by Vernier Company, and its time, frequency and nonlinear analysis. Used components and instruction for creating software are represented in user manual. Results of the tested program are shown in the figures.

    Heart beat classification

    Get PDF
    Cieľom tejto práce bolo vyvinúť metódu klasifikácie EKG cyklov do dvoch tried, ischemických a neischemických cyklov. Ako vstupný signál boli použité spracované srdečné cykly (P-QRS-T cykly) získané meraním animálneho EKG ortogonálným zvodovým systémom. Príznakový vektor bol vytvorený ako výsledok analýzy vzájomnej koherencie spektier, analýzy primárnych komponentov, HRV parametrov a ich kombinácií. Výsledné cykly boli klasifikované za pomoci doprednej neurónovej siete so spätným šírením chyby. Klasifikátor bol navrhnutý v Matlabe. Výkon klasifikácie dosahoval hodnôt v rozmedzí 87,2 až 100%. Výsledky experimentu môžu byť vhodné pre budúce štúdie automatickej klasifikácie EKG.The aim of this work was to develop the method for classification of ECG beats into two classes, namely ischemic and non-ischemic beats. Heart beats (P-QRS-T cycles) selected from animals orthogonal ECGs were preprocessed and used as the input signals. Spectral features vectors (values of cross spectral coherency), principal component and HRV parameters were derived from the beats. The beats were classified using feedforward multilayer neural network designed in Matlab. Classification performance reached the value approx. from 87,2 to 100%. Presented results can be suitable in future studies aimed at automatic classification of ECG.

    Tris(propane-1,2-diamine-κ2 N,N′)nickel(II) tetra­cyanidonickelate(II)

    Get PDF
    The title compound, [Ni(C3H10N2)3][Ni(CN)4], is built up of [Ni(pn)3]2+ cations (pn is 1,2-diamino­propane) and [Ni(CN)4]2− anions. Both NiII atoms in the cation and the anion lie on a mirror plane. The respective ions inter­act through Coulombic forces and through a complex network of hydrogen bonds. Extended disorder associated with the cation has been resolved. The occupancies of the respective disordered positions are 0.4:0.4:0.2

    Tris(propane-1,2-diamine-κ2 N,N′)nickel(II) tetra­cyanidoplatinate(II)

    Get PDF
    In the title compound, [Ni(C3H10N2)3][Pt(CN)4], the [Pt(CN)4]2− anion with the environment of the PtII atom, lying on a mirror plane, is square planar, whereas the NiII atom in the [Ni(C3N2H10)3]2+ cation, also lying on a mirror plane, has a slightly distorted octa­hedral coordination geometry. Three chiral 1,2-diamino­propane mol­ecules, which are disordered equally over two sets of positions, adopt Δ(δδδ) and Δ(λλλ) configurations. The average Ni—N and Pt—C bond lengths are 2.131 (10) and 1.988 (10) Å, respectively. The cations and anions are connected by N—H⋯N hydrogen bonds

    Chloridotetra­pyridine­copper(II) dicyanamidate pyridine disolvate

    Get PDF
    In the crystal structure of the title compound, [CuCl(C5H5N)4][N(CN)2]·2C6H5N, the copper(II) cations are coordinated by one chloride anion and four N-bonded pyridine ligands into discrete complexes. The copper(II) cation shows a square-pyramidal coordination environment, with the chloride anion in the apical position. However, there is one additional chloride anion at 3.0065 (9) Å, leading to a disorted octa­hedral coordination mode for copper. The copper(II) cation, the chloride ligand and the central N atom of the dicyanamide anion are located on twofold rotation axes. Two pyridine solvent molecules are observed in general positions

    Tris(1,10-phenanthroline-κ2 N,N′)iron(II) μ-oxido-bis[trichloridoferrate(III)] ethanol hemisolvate

    Get PDF
    The title compound, [Fe(C12H8N2)3][Fe2Cl6O]·0.5CH3CH2OH, consists of one [Fe(phen)3]2+ cation (phen = 1,10-phen­anthroline), one [Fe2Cl6O]2− anion and one half-mol­ecule of ethanol. In the cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octa­hedral geometry. In the bent anion, two FeIII atoms are connected by a bridging oxide O atom [bridging angle = 160.6 (4)°], and each FeIII atom is also coordinated by three Cl atoms, completing a distorted tetra­hedral geometry

    A potential anti­cancer agent: 5-chloro-7-iodo-8-hy­droxy­quinolinium dichlorido(5-chloro-7-iodo­quinolin-8-olato-κ2 N,O)palladium(II) dihydrate

    Get PDF
    The title PdII coordination compound, (C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2O, was prepared as a potential anti­cancer agent. Its structure is ionic and consists of a square-planar [PdCl2(CQ)]− complex anion (CQ is 5-chloro-7-iodo­quinolin-8-olate), with the PdII atom surrounded by two chloride ligands in a cis configuration and one N,O-bidentate CQ mol­ecule, a protonated anion of CQ as counter-cation and two non-coordinated water mol­ecules. The water mol­ecules are involved in O—H⋯O and N—H⋯O hydrogen bonds, which inter­connect the HCQ+ cations into a chain parallel to [010]. Apart from these inter­actions, the structure is also stabilized by face-to-face π–π inter­actions [centroid–centroid = 3.546 (3) Å], which occur between the phenolic parts of the complex anions and cations
    corecore