106 research outputs found

    Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function.

    Get PDF
    Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10-7 M - 5 × 10-6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10-5 M - 3 × 10-4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.This work was supported partly by grants from the Regione Campania CISI-Lab Project, CRèME Project and TIMING Project

    Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment

    Get PDF
    Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data

    Photodynamic and Antibiotic Therapy Impair the Pathogenesis of Enterococcus faecium in a Whole Animal Insect Model

    Get PDF
    Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments

    Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation

    Get PDF
    Background: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. Methodology/Principal Findings: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. Conclusions/Significance: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT.National Institutes of Health (U.S.) (Grant number R01AI050875

    Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice

    Get PDF
    Iodine and bromine species participate in key atmospheric reactions including the formation of cloud con- densation nuclei and ozone depletion. We present a novel method coupling a high-performance liquid chromatogra- phy with ion chromatography and inductively coupled plas- ma mass spectrometry, which allows the determination of iodine (I) and bromine (Br) species (IO3−, I−, Br−, BrO3−) at the picogram-per-gram levels presents in Antarctic ice. Chromatographic separation was achieved using an ION- PAC® AS16 Analytical Column with NaOH as eluent. Detection limits for I and Br species were 5 to 9 pg g−1 with an uncertainty of less than 2.5% for all considered species. Inorganic iodine and bromine species have been determined in Antarctic ice core samples, with concentrations close to the detection limits for iodine species, and approximately 150 pg g−1 for Br−. Although iodate (IO3−) is the most abundant iodine species in the atmosphere, only the much rarer iodide (I−) species was present in Antarctic Holocene ice. Bromine was found to be present in Antarctic ice as Br−

    LE GROTTE SOTTOMARINE DI CAPO D’OTRANTO – LE

    No full text
    The entity of submarine cave presence has been evaluated along the coastline of Cape of Otranto (SE Italy). During the survey, lasted 3 years, 5 new submarine caves have been explored and described, together with other 6 already known caves. Submarine caves at Cape of Otranto show multiple connections (entrances) with the open sea, and a typical cavern morphology. As a consequence of the marine erosion, often the cave ceil is open and the sunlight incomes from it. The results obtained with the present investigation are a conspicuous contribute to the valorisation of the natural environment of the Cape of Otranto, in the framework of the ongoing request for the institution of a Marine Protected Area in that coast

    Can FeNO be a biomarker in the post-COVID-19 patients monitoring?

    No full text
    The nature of the inflammatory and fibrotic processes found in patients with post-COVID-19 syndrome makes it possible to speculate that in such patients fractional exhaled nitric oxide (FeNO) may be a useful biomarker. Consequently, we set out to verify the consistency of this hypothesis. We consecutively enrolled 68 post-COVID patients after being hospitalized for persistent clinical manifestations within 2 months from disease onset and 29 healthy volunteers as control group. None of post-COVID patients had bronchial asthma or were being treated with a corticosteroid. Only 19 out of 68 post-COVID-19 patients reported a FeNO value > 25 ppb. The mean FeNO value in post-COVID-19 patients was 18.55 ppb (95% CI: 15.50 to 21.58), while in healthy subjects it was 17.46 ppb (95% CI: 15.75 to 19.17). The mean difference was not statistically significant (P = 0.053). However, the mean FeNO value of post-COVID-19 patients was higher in men than in women (20.97 ppb; 95% CI: 16.61 to 25.33 vs 14.36 ppb; 95% CI: 11.11 to 17.61) with a difference between the two sexes that was statistically significant (P = 0.016). Mean FeNO was 14.89 ppb (95% CI: 10.90 to 18.89) in patients who had been treated with systemic corticosteroids because of their COVID-19, and 20.80 ppb (95% CI: 16.56 to 25.04) in those who had not taken them, with a difference that was statistically significant (P = 0.043). The data generated in this study suggest that measurement of FeNO is not useful as a biomarker in post-COVID-19 patient. However, this hypothesis needs solid validation with additional specifically designed studies

    LE GROTTE SOTTOMARINE DI CAPO D’OTRANTO - LE

    No full text
    The entity of submarine cave presence has been evaluated along the coast of Cape of Otranto (S-E Italy), from Punta del Malcantone to Porto Badisco. During the survey (lasted 3 years) new submarine caves have been discovered and explored. A comparative study of the Otranto caves suggests that they are the result of a multilevel activity of carstic and marine erosions, the last of which continues, at present, being the main responsible of the cavity enlargment. Submarine caves of the Cape of Otranto show multiple connections (entrances) with the open sea, and a typical cavern-morphology which, in addition, probably hosted prehistoric men when the sea level was 100 m below the present one. As a consequence of the marine erosion, often the cave ceil is open and the sunligth incomes from it. The results obtained with the present investigation are a conspicuous contribute to the valorization of the natural environment of the Cape of Otranto, in the framework of the ongoing request for the institution of a Marine Protected Area in that coast

    IL-3 in the development and function of basophils

    No full text
    The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies
    • …
    corecore