58 research outputs found

    Investigation of MAGSAT and TRIAD magnetometer data to provide corrective information on high-latitude external fields

    Get PDF
    The compilation of a catalog of the MAGSAT-observed high altitude disturbances is discussed and an example of contents and format is given. The graphs allow the investigation of Birkeland current signatures which are superimposed upon the main geomagnetic field. An example of a display of the MAGSAT orbital tracks in a polar geomagnetic coordinate system with the locations, flow directions, and intensities of field aligned currents shown in color is also given. The display was generated using an interactive color graphics terminal

    The correlation of VLF propagation variations with atmospheric planetary-scale waves

    Get PDF
    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation

    The dynamic cusp at low altitudes: A case study combining Viking, DMSP, and Sondrestrom incoherent scatter radar observations

    Get PDF
    A case study involving data from three satellites and a ground-based radar are presented. Focus is on a detailed discussion of observations of the dynamic cusp made on 24 Sep. 1986 in the dayside high-latitude ionosphere and interior magnetosphere. The relevant data from space-borne and ground-based sensors is presented. They include in-situ particle and field measurements from the DMSP-F7 and Viking spacecraft and Sondrestrom radar observations of the ionosphere. These data are augmented by observations of the IMF and the solar wind plasma. The observations are compared with predictions about the ionospheric response to the observed particle precipitation, obtained from an auroral model. It is shown that observations and model calculations fit well and provide a picture of the ionospheric footprint of the cusp in an invariant latitude versus local time frame. The combination of Viking, Sondrestrom radar, and IMP-8 data suggests that we observed an ionospheric signature of the dynamic cusp. Its spatial variation over time which appeared closely related to the southward component of the IMF was monitored
    • 

    corecore