9 research outputs found

    Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clones with high-level mupirocin resistance

    Get PDF
    An elevated proportion (27.2%) of high-level mupirocin-resistant methicillin-resistant Staphylococcus aureus (HLMUPR-MRSA) isolates were found in our environment in one year period. HLMUPR-MRSA isolates were mainly collected from skin and soft tissue samples, and diabetes was the main related comorbidity condition. These isolates were more frequently found in vascular surgery. HLMUPR-MRSA were more resistant to aminoglycosides than mupirocin-susceptible MRSA, linked to the presence of bifunctional and/or nucleotidyltransferase enzymes with/without macrolide resistance associated with the msr(A) gene. Most of HLMUPR-MRSA isolates belonged to ST125/t067. Nine IS257-ileS2 amplification patterns (p3 was the most frequent) were observed in HLMUPR-MRSA isolates, suggesting the presence of several mupirocin-resistance-carrying plasmids in our environment and promoting the emergence of mupirocin resistance. The presence of the same IS257-ileS2 amplification pattern p3 in 65% of HLMUPR-MRSA, all of them ST125/t067, suggests a clonal spread in our hospital and community environment which could explain the high prevalence of HLMUPR-MRSA during the study period. An outbreak situation or an increase in mupirocin consumption was not observed

    Silver nanoparticles produced by laser ablation and re-irradiation are effective preventing peri-implantitis multispecies biofilm formation

    Get PDF
    Implant-associated infection due to biofilm formation is a growing problem. Given that silver nanoparticles (Ag-NPs) have shown antibacterial effects, our goal is to study their effect against multispecies biofilm involved in the development of peri-implantitis. To this purpose, Ag-NPs were synthesized by laser ablation in de-ionized water using two different lasers, leading to the production of colloidal suspensions. Subsequently, part of each suspension was subjected to irradiation one and three times with the same laser source with which it was obtained. Ag-NPs were immobilized on the surface of titanium discs and the resultant materials were compared with unmodified titanium coupons. Nanoparticles were physico-chemically analysed to determine their shape, crystallinity, chemical composition, and mean diameter. The materials were incubated for 90 min or 48 h, to evaluate bacterial adhesion or biofilm formation respectively with Staphylococcus aureus or oral mixed bacterial flora composed of Streptococcus oralis, Actinomyces naeslundii, Veionella dispar, and Porphyromonas gingivalis. Ag-NPs help prevent the formation of biofilms both by S. aureus and by mixed oral bacterial flora. Nanoparticles re-irradiated three times showed the biggest antimicrobial effects. Modifying dental implants in this way could prevent the development of peri-implantitis.Xunta de Galicia | Ref. ED431C 2019/23Ministerio de Ciencia e Innovación | Ref. PID2020-117900RB-I00Ministerio de Ciencia e Innovación | Ref. EQC2018-004315-PInterreg Atlantic Area | Ref. Bluehuman EAPA_151/201

    Vancomycin-loaded 3D-printed polylactic acid–hydroxyapatite scaffolds for bone tissue engineering

    Get PDF
    The regeneration of bone remains one of the main challenges in the biomedical field, with the need to provide more personalized and multifunctional solutions. The other persistent challenge is related to the local prevention of infections after implantation surgery. To fulfill the first one and provide customized scaffolds with complex geometries, 3D printing is being investigated, with polylactic acid (PLA) as the biomaterial mostly used, given its thermoplastic properties. The 3D printing of PLA in combination with hydroxyapatite (HA) is also under research, to mimic the native mechanical and biological properties, providing more functional scaffolds. Finally, to fulfill the second one, antibacterial drugs locally incorporated into biodegradable scaffolds are also under investigation. This work aims to develop vancomycin-loaded 3D-printed PLA–HA scaffolds offering a dual functionality: local prevention of infections and personalized biodegradable scaffolds with osseointegrative properties. For this, the antibacterial drug vancomycin was incorporated into 3D-printed PLA–HA scaffolds using three loading methodologies: (1) dip coating, (2) drop coating, and (3) direct incorporation in the 3D printing with PLA and HA. A systematic characterization was performed, including release kinetics, Staphylococcus aureus antibacterial/antibiofilm activities and cytocompatibility. The results demonstrated the feasibility of the vancomycin-loaded 3D-printed PLA–HA scaffolds as drug-releasing vehicles with significant antibacterial effects for the three methodologies. In relation to the drug release kinetics, the (1) dip- and (2) drop-coating methodologies achieved burst release (first 60 min) of around 80–90% of the loaded vancomycin, followed by a slower release of the remaining drug for up to 48 h, while the (3) 3D printing presented an extended release beyond 7 days as the polymer degraded. The cytocompatibility of the vancomycin-loaded scaffolds was also confirmed.Agencia Estatal de Investigación | Ref. PID2020-115415RB-I00Xunta de Galicia | Ref. ED431C 2021/49Xunta de Galicia | Ref. ED481A 2019/31

    The reference site collaborative network of the european innovation partnership on active and healthy ageing

    Get PDF
    Seventy four Reference Sites of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) have been recognised by the European Commission in 2016 for their commitment to excellence in investing and scaling up innovative solutions for active and healthy ageing. The Reference Site Collaborative Network (RSCN) brings together the EIP on AHA Reference Sites awarded by the European Commission, and Candidate Reference Sites into a single forum. The overarching goals are to promote cooperation, share and transfer good practice and solutions in the development and scaling up of health and care strategies, policies and service delivery models, while at the same time supporting the action groups in their work. The RSCN aspires to be recognized by the EU Commission as the principal forum and authority representing all EIP on AHA Reference Sites. The RSCN will contribute to achieve the goals of the EIP on AHA by improving health and care outcomes for citizens across Europe, and the development of sustainable economic growth and the creation of jobs
    corecore