1,252 research outputs found
Genetic algorithms with DNN-based trainable crossover as an example of partial specialization of general search
Universal induction relies on some general search procedure that is doomed to
be inefficient. One possibility to achieve both generality and efficiency is to
specialize this procedure w.r.t. any given narrow task. However, complete
specialization that implies direct mapping from the task parameters to
solutions (discriminative models) without search is not always possible. In
this paper, partial specialization of general search is considered in the form
of genetic algorithms (GAs) with a specialized crossover operator. We perform a
feasibility study of this idea implementing such an operator in the form of a
deep feedforward neural network. GAs with trainable crossover operators are
compared with the result of complete specialization, which is also represented
as a deep neural network. Experimental results show that specialized GAs can be
more efficient than both general GAs and discriminative models.Comment: AGI 2017 procedding, The final publication is available at
link.springer.co
Hypodynamic and hypokinetic condition of skeletal muscles
Data are presented in regard to the effect of unilateral brachial amputation on the physiological characteristics of two functionally different muscles, the brachial muscle (flexor of the brachium) and the medial head of the brachial triceps muscle (extensor of the brachium), which in rats represents a separate muscle. Hypokinesia and hypodynamia were studied
dimer paramagnetic centers in lead germanate crystals doped with iron and halogen (Cl-, Br-, F-) ions
The dimer complexes Fe3+-Cl-, Fe3+-Br-, and Fe3+-O2- in ferroelectric lead germanate crystals doped with iron and annealed in chlorine-, bromine-, and fluorine-containing atmospheres have been studied using the electron paramagnetic resonance method. These complexes are formed by Fe3+ ions in the trigonal position of lead and their associated anions located in the interstitial channel of the structure. The positions of the charge-compensating anions in the channel have been discussed based on the analysis of the parameters of the spin Hamiltonian and their temperature dependence. © 2013 Pleiades Publishing, Ltd
On the structure of non-full-rank perfect codes
The Krotov combining construction of perfect 1-error-correcting binary codes
from 2000 and a theorem of Heden saying that every non-full-rank perfect
1-error-correcting binary code can be constructed by this combining
construction is generalized to the -ary case. Simply, every non-full-rank
perfect code is the union of a well-defined family of -components
, where belongs to an "outer" perfect code , and these
components are at distance three from each other. Components from distinct
codes can thus freely be combined to obtain new perfect codes. The Phelps
general product construction of perfect binary code from 1984 is generalized to
obtain -components, and new lower bounds on the number of perfect
1-error-correcting -ary codes are presented.Comment: 8 page
Electron paramagnetic resonance of Gd3+ ions in Ca1-x-yYxGdyF2+x+y crystals
Electron paramagnetic resonance of Ca1-x-yYxGdyF2+x+y single crystals has revealed spectra that are not typical of gadolinium-doped CaF2 crystals. These spectra have a nearly tetragonal symmetry and are most probably caused by Gd3+ ions localized in yttrium clusters. Weak spectra of tetragonal Gd3+ centers, whose parameters are close to those of a cubic gadolinium center caused by an isolated Gd3+ ion, have been also detected. These centers are attributed to isolated Gd3+ ions localized near octahedral rare-earth clusters or their associations. © 2013 Pleiades Publishing, Ltd
On the excitation of magnetic signals by Love waves
The polarization method for recognition of seismomagnetic waves against a noise background is presented. The method is applied to detection of magnetic oscillations accompanying the propagation of surface Love wave after a strong earthquake. A specific property of the Love waves is that theoretically the Tolman-Stewart effect is alone responsible for the magnetic field that penetrates into the Earth's surface. Data from the Mondy Magnetic Observatory and the Talaya Seismic Station suggest that the arrival time, duration, period,and polarization of magnetic signals conform with the idea of generation of alternating electric currents due to fluid vibrations in pores and fractures of rocks under the action of the inertial force associated with the Love wave propagation
- …