15 research outputs found

    Ribosomal DNA methylation in human and mouse oocytes increases with age

    Get PDF
    An age-dependent increase in ribosomal DNA (rDNA) methylation has been observed across a broad spectrum of somatic tissues and the male mammalian germline. Bisulfite pyrosequencing (BPS) was used to determine the methylation levels of the rDNA core promoter and the rDNA upstream control element (UCE) along with two oppositely genomically imprinted control genes (PEG3 and GTL2) in individual human germinal vesicle (GV) oocytes from 90 consenting women undergoing fertility treatment because of male infertility. Apart from a few (4%) oocytes with single imprinting defects (in either PEG3 or GTL2), the analyzed GV oocytes displayed correct imprinting patterns. In 95 GV oocytes from 42 younger women (26-32 years), the mean methylation levels of the rDNA core promoter and UCE were 7.4±4.0% and 9.3±6.1%, respectively. In 79 GV oocytes from 48 older women (33-39 years), methylation levels increased to 9.3±5.3% (P = 0.014) and 11.6±7.4% (P = 0.039), respectively. An age-related increase in oocyte rDNA methylation was also observed in 123 mouse GV oocytes from 29 4-16-months-old animals. Similar to the continuously mitotically dividing male germline, ovarian aging is associated with a gain of rDNA methylation in meiotically arrested oocytes. Oocytes from the same woman can exhibit varying rDNA methylation levels and, by extrapolation, different epigenetic ages

    Species-specific paternal age effects and sperm methylation levels of developmentally important genes

    Get PDF
    A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here

    Alters- und Adipositas-Effekte auf das Spermien-Methylom und die Konsequenzen für die nächste Generation

    No full text
    Besides a growing tendency for delayed parenthood, sedentary lifestyle coupled with overnutrition has dramatically increased worldwide over the last few decades. Epigenetic mechanisms can help us understand the epidemics and heritability of complex traits like obesity to a significant extent. Majority of the research till now has focused on determining the impact of maternal factors on health and disease risk in the offspring(s). This doctoral thesis is focused on deciphering the potential effects of male aging and obesity on sperm methylome, and consequences/transmission via germline to the next generation. In humans, this was assessed in a unique cohort of ~300 sperm samples, collected after in vitro fertilization/intracytoplasmic sperm injection, as well as in conceived fetal cord blood samples of the children. Furthermore, aging effect on sperm samples derived from a bovine cohort was analyzed. The study identified that human male aging significantly increased the DNA methylation levels of the promoter, the upstream core element, the 18S, and the 28S regions of ribosomal DNA (rDNA) in sperm. Prediction models were developed to anticipate an individual’s age based on the methylation status of rDNA regions in his sperm. Hypermethylation of alpha satellite and LINE1 repeats in human sperm was also observed with aging. Epimutations, which are aberrantly methylated CpG sites, were significantly higher in sperm of older males compared to the younger ones. These effects on the male germline had a negative impact on embryo quality of the next generation. Consistent with these results, DNA methylation of rDNA regions, bovine alpha satellite, and testis satellite repeats displayed a significant positive correlation with aging sperm samples within the same individual and across different age-grouped bulls. A positive association between human male obesity/body mass index (BMI) and DNA methylation of the imprinted MEG3 gene and the obesity-related HIF3A gene was detected in sperm. These BMI-induced sperm DNA methylation signatures were transmitted to next generation fetal cord blood (FCB) samples in a gender-specific manner. Males, but not female offsprings exhibited a significant positive correlation between father’s BMI and FCB DNA methylation in the two above-mentioned amplicons. Additionally, hypomethylation of IGF2 with increased paternal BMI was observed in female FCB samples. Parental allele-specific in-depth methylation analysis of imprinted genes using next generation sequencing technology also revealed significant correlations between paternal factors like age and BMI, and the corresponding father’s allele DNA methylation in FCB samples. Deep bisulphite sequencing of imprinted genes in diploid somatic cord blood cells of offspring detected that the levels of DNA methylation signatures largely depended on the underlying genetic variant, i.e. sequence haplotypes. Allele-specific epimutations were observed in PEG1, PEG5, MEG3, H19, and IGF2 amplicons. For the former three genes, the non-imprinted unmethylated allele displayed more epimutations than the imprinted methylated allele. On the other hand, for the latter two genes, the imprinted allele exhibited higher epimutation rate than that of the non-imprinted allele. In summary, the present study proved that male aging and obesity impacts the DNA methylome of repetitive elements and imprinted genes respectively in sperm, and also has considerable consequences on the next generation. Nevertheless, longitudinal follow-up studies are highly encouraged to elucidate if these effects can influence the risk of developing abnormal phenotype in the offspring during adulthood.Weltweit kann ein Trend zur späteren Elternschaft sowie die dramatische Zunahme eines bewegungsarmen Lebensstils in Kombination mit einer Überernährung beobachtet werden. Die Verbreitung sowie die Vererbung derartig komplexer Merkmale oder Erkrankungen lassen sich oftmals unter Berücksichtigung epigenetischer Mechanismen besser verstehen. Vorangegangene Studien untersuchten hierbei jedoch primär den Einfluss maternaler Faktoren auf die Gesundheit und das Krankheitsrisiko der nächsten Generation. Diese Doktorarbeit hat das Ziel potentielle Altersinduzierte sowie Adipositas-bedingte Effekte auf das Methylom von Spermien sowie die damit einhergehenden Konsequenzen für die nächste Generation zu identifizieren. Hierfür stand eine humane Kohorte bestehend aus ~300 Spermienproben, welche nach einer in vitro Fertilisation bzw. Intrazytoplasmatischen Spermieninjektion gesammelt wurden, und das entsprechende Nabelschnurblut der mit Hilfe dieser Behandlungen gezeugten Kinder zur Verfügung. Ergänzend dazu wurde der Alterseffekt in bovinen Spermienproben analysiert. Im Rahmen dieser Arbeit konnte eine signifikante Korrelation des männlichen Alterungsprozesses mit einer erhöhten DNA-Methylierung der ribosomalen DNA (rDNA) in der Promotorregion, dem strangaufwärts gelegenen Promotorelement (Upstream Core Element), der 18S- sowie der 28S-Region von Keimzellen aufgezeigt werden. Hierauf basierend wurde ein Vorhersageprogramm entwickelt, welches es ermöglicht anhand des Methylierungslevels der rDNA in den Spermien das Alter des entsprechenden Mannes zu berechnen. Weiterhin konnte beobachtet werden, dass mit dem Alterungsprozess in Spermien eine Hypermethylierung der Long Interspersed Nuclear Elements (LINE-1) und der Alpha-Satelliten-DNA einhergeht. Des Weiteren zeigte der Vergleich von Spermien alter und junger Männer auf, dass Epimutationen, welche als fehlerhaft methylierte CpG-Stellen definiert werden, signifikant häufiger in Spermien alter Männer detektierbar sind. Allgemein zeigte sich zudem, dass diese altersabhängigen Effekte auf die Keimzellen sich negativ auf die Qualität der Embryonen auswirken. Übereinstimmend mit diesen Ergebnissen konnte auch in Spermien von Rindern dieser Alterseffekt nachgewiesen werden. Es zeigte sich mit zunehmendem Alter eine signifikant erhöhte Methylierung der rDNA-Regionen und der Alpha-/ Testis-Satelliten-DNAs sowohl innerhalb eines Individuums, als auch zwischen verschiedenen altersgruppierten Individuen. Weiterhin konnte eine positive Korrelation des Body-Mass-Index (engl. body mass index; kurz: BMI) eines Mannes und der Methylierung in MEG3 und HIF3A in dessen Spermien detektiert werden. Anhand der untersuchten Nabelschnurblute konnte aufgezeigt werden, dass diese BMI-induzierten Methylierungsveränderungen in einem geschlechter-spezifischen Kontext an die nächste Generation weitergegeben werden. So war ausschließlich bei männlichen Nachkommen eine signifikant positive Assoziation des väterlichen BMIs und der DNA-Methylierung dieser beiden Gene im Nabelschnurblut nachweisbar. Eine mit dem väterlichen BMI einhergehende Hypomethylierung des Gens IGF2 war hingegen ausschließlich in den Nabelschnurblut-Proben weiblicher Nachkommen messbar. Die Auftrennung der Allele nach ihrer parentalen Herkunft, zeigte eine signifikante Korrelation zwischen den paternalen Faktoren, wie Alter und BMI, und dem Methylierungslevel des korrespondierenden paternalen Allels im Nabelschnurblut. Mit Hilfe der Deep Bisulfite Sequenzierung diploider Zellen aus dem Nabelschnurblut der Nachkommen wurde die DNA-Methylierung geprägte Gene untersucht. Hierbei konnte aufgezeigt werden, dass das Methylierungslevel stark von der zu Grunde liegenden genetischen Variante (Haplotyp) abhängt. Allel-spezifische Epimutationen wurden in den untersuchten Amplikons der Gene PEG1, PEG5, MEG3, H19 und IGF2 nachgewiesen. Bei PEG1, PEG5 und MEG3 waren mehr Epimutationen der nicht-geprägten unmethylierten Allele, als der geprägten methylierten Allele detektierbar. Konträr hierzu war bei den Genen H19 und IGF2 eine erhöhte Epimutationsrate der geprägten und somit methylierten Allele nachweisbar. Diese Doktorarbeit offenbart altersinduzierte sowie Adipositas-bedingte Einflüsse auf die DNA-Methylierung repetitiver Elemente und geprägter Gene in männlichen Keimzellen, sowie damit einhergehende potentielle Konsequenzen für die nächste Generation. Um schlussendlich jedoch eine Aussage treffen zu können, ob aufgrund dieser Effekte eine erhöhte Prädisposition der nächsten Generation zur Entwicklung anormaler Phänotypen besteht, müssen longitudinale Folgestudien durchgeführt werden

    Male obesity effects on sperm and next-generation cord blood DNA methylation.

    No full text
    The prevalence of metabolic disorders, in particular obesity has dramatically increased worldwide. Genetic variants explain only a minor part of the obesity epidemic induced by physical inactivity and over-nutrition. Epidemiological studies in humans and animal models indicate that epigenetic changes associated with adverse parental and/or intrauterine factors may contribute to the missing heritability of metabolic disorders. Possible adverse paternal effects are likely transmitted by sperm to the next-generation. To investigate this hypothesis, we have systematically analyzed the effects of male body mass index (BMI) on sperm epigenome and its association with next-generation fetal cord blood (FCB) DNA methylation. Methylation levels of maternally imprinted (PEG1, PEG4, PEG5, and PEG10), paternally imprinted (H19-IG DMR, IGF2-DMR0, and MEG3-IG DMR) regions, and obesity-related non-imprinted HIF3A gene were quantified by bisulphite pyrosequencing in sperm samples of 294 human donors undergoing in vitro fertilization or intracytoplasmic sperm injection, and in 113 FCBs of the resulting offspring. Multivariable regression analyses revealed that MEG3 intergenic differentially methylated region (IG DMR) showed positive correlation between sperm methylation and donor's BMI. A gender-specific correlation between paternal BMI and FCB methylation was observed for MEG3-IG DMR, HIF3A, and IGF2-DMR0. The former two genes displayed same directional nominal association (as sperm) between paternal BMI and FCB methylation in male offspring. Hypomethylation of IGF2-DMR0 with increased paternal BMI was observed in FCBs from female offsprings. Our results suggest that male obesity is nominally associated with modification of sperm DNA methylome in humans, which may affect the epigenome of the next-generation. Nevertheless, it is important to note that none of the associated p-values survived multiple testing adjustments. Future work should test the effect of associated methylation aberrations in the offspring as DNA methylation was shown to control expression and/or imprint establishment across the studied genes

    Hypermethylation of the non-imprinted maternal <i>MEG3</i> and paternal <i>MEST</i> alleles is highly variable among normal individuals

    No full text
    <div><p>Imprinted genes show parent-specific activity (functional haploidy), which makes them particularly vulnerable to epigenetic dysregulation. Here we studied the methylation profiles of oppositely imprinted genes at single DNA molecule resolution by two independent parental allele-specific deep bisulfite sequencing (DBS) techniques. Using Roche (GSJunior) next generation sequencing technology, we analyzed the maternally imprinted <i>MEST</i> promoter and the paternally imprinted <i>MEG3</i> intergenic (IG) differentially methylated region (DMR) in fetal cord blood, adult blood, and visceral adipose tissue. Epimutations were defined as paternal or maternal alleles with >50% aberrantly (de)methylated CpG sites, showing the wrong methylation imprint. The epimutation rates (range 2–66%) of the paternal <i>MEST</i> and the maternal <i>MEG3</i> IG DMR allele, which should be completely unmethylated, were significantly higher than those (0–15%) of the maternal <i>MEST</i> and paternal <i>MEG3</i> alleles, which are expected to be fully methylated. This hypermethylation of the non-imprinted allele (HNA) was independent of parental origin. Very low epimutation rates in sperm suggest that HNA occurred after fertilization. DBS with Illumina (MiSeq) technology confirmed HNA for the <i>MEST</i> promoter and the <i>MEG3</i> IG DMR, and to a lesser extent, for the paternally imprinted secondary <i>MEG3</i> promoter and the maternally imprinted <i>PEG3</i> promoter. HNA leads to biallelic methylation of imprinted genes in a considerable proportion of normal body cells (somatic mosaicism) and is highly variable between individuals. We propose that during development and differentiation maintenance of differential methylation at most imprinting control regions may become to some extent redundant. The accumulation of stochastic and environmentally-induced methylation errors on the non-imprinted allele may increase epigenetic diversity between cells and individuals.</p></div

    Parental allele-specific epimutation rates of the <i>MEG3</i> IG DMR and the <i>MEST</i> promoter.

    No full text
    <p>The percentage of alleles with >50% aberrantly (de)methylated CpGs was demined by DBS with the Roche GSJunior in FCB, AB, and VAT samples. The unmethylated alleles of the paternally imprinted <i>MEG3</i> and the maternally imprinted <i>MEST</i> genes displayed significantly higher epimutation rates than the methylated alleles.</p
    corecore