195 research outputs found

    Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging.

    Get PDF
    Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%)

    Cranioplasty After Severe Traumatic Brain Injury: Effects of Trauma and Patient Recovery on Cranioplasty Outcome

    Get PDF
    Background: In patients with severe traumatic brain injury (sTBI) treated with decompressive craniectomy (DC), factors affecting the success of later cranioplasty are poorly known.Objective: We sought to investigate if injury- and treatment-related factors, and state of recovery could predict the risk of major complications in cranioplasty requiring implant removal, and how these complications affect the outcome.Methods: A retrospective cohort of 40 patients with DC following sTBI and subsequent cranioplasty was studied. Non-injury-related factors were compared with a reference population of 115 patients with DC due to other conditions.Results: Outcome assessed 1 day before cranioplasty did not predict major complications leading to implant removal. Successful cranioplasty was associated with better outcome, whereas a major complication attenuates patient recovery: in patients with favorable outcome assessed 1 year after cranioplasty, major complication rate was 7%, while in patients with unfavorable outcome the rate was 42% (p = 0.003). Of patients with traumatic subarachnoid hemorrhage (tSAH) on admission imaging 30% developed a major complication, while none of patients without tSAH had a major complication (p = 0.014). Other imaging findings, age, admission Glasgow Coma Scale, extracranial injuries, length of stay at intensive care unit, cranioplasty materials, and timing of cranioplasty were not associated with major complications.Conclusion: A successful cranioplasty after sTBI and DC predicts favorable outcome 1 year after cranioplasty, while stage of recovery before cranioplasty does not predict cranioplasty success or failure. tSAH on admission imaging is a major risk factor for a major complication leading to implant removal

    Uncertainty in maritime risk analysis: Extended case study on chemical tanker collisions

    Get PDF
    Uncertainty is inherent to risk analysis. Therefore, it is extremely important to properly address the issue of uncertainty. In the field of risk analysis for maritime transportation systems, the effect of uncertainty is rarely discussed or quantified. For this reason, this article discusses a case study dealing with risk analysis for a chemical spill in the Gulf of Finland and analyses the related uncertainties by adopting a systematic framework. Risk is assessed in terms of the expected spill frequency and spill volumes caused by collisions between ships and chemical tankers in the Gulf of Finland. This is done by applying a collision consequence with a novel approach-to-collision-speed linkage model and Gulf of Finland-specific causation factors, which are based on reanalysing accident data. This article also presents a metamodel for assessing collision probability with initial vessel speeds for any given scenario where a chemical tanker is about to be struck by another vessel. Even when conducting a risk analysis using state-of-the-art methods, there is still a medium-high degree of uncertainty in the model presented in this article, which only becomes apparent when conducting a systematic uncertainty assessment analysis. However, an uncertainty assessment is an important part of quantitative maritime risk analysis. For this purpose, a qualitative framework for uncertainty assessment analysis is introduced for general use in the field of maritime risk analysis.</p

    Plasma neurofilament light admission levels and development of axonal pathology in mild traumatic brain injury

    Get PDF
    Background: It is known that blood levels of neurofilament light (NF-L) and diffusion-weighted magnetic resonance imaging (DW-MRI) are both associated with outcome of patients with mild traumatic brain injury (mTBI). Here, we sought to examine the association between admission levels of plasma NF-L and white matter (WM) integrity in post-acute stage DW-MRI in patients with mTBI. Methods: Ninety-three patients with mTBI (GCS ≥ 13), blood sample for NF-L within 24 h of admission, and DW-MRI ≥ 90 days post-injury (median = 229) were included. Mean fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated from the skeletonized WM tracts of the whole brain. Outcome was assessed using the Extended Glasgow Outcome Scale (GOSE) at the time of imaging. Patients were divided into CT-positive and -negative, and complete (GOSE = 8) and incomplete recovery (GOSE < 8) groups. Results: The levels of NF-L and FA correlated negatively in the whole cohort (p = 0.002), in CT-positive patients (p = 0.016), and in those with incomplete recovery (p = 0.005). The same groups showed a positive correlation with mean MD, AD, and RD (p < 0.001—p = 0.011). In CT-negative patients or in patients with full recovery, significant correlations were not found. Conclusion: In patients with mTBI, the significant correlation between NF-L levels at admission and diffusion tensor imaging (DTI) measurements of diffuse axonal injury (DAI) over more than 3 months suggests that the early levels of plasma NF-L may associate with the presence of DAI at a later phase of TBI

    Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury

    Get PDF
    Background: There is substantial interest in blood biomarkers as fast and objective diagnostic tools for traumatic brain injury (TBI) in the acute setting. Methods: Adult patients (≥18) with TBI of any severity and indications for CT scanning and orthopaedic injury controls were prospectively recruited during 2011–2013 at Turku University Hospital, Finland. The severity of TBI was classified with GCS: GCS 13–15 was classified as mild (mTBI); GCS 9–12 as moderate (moTBI) and GCS 3–8 as severe (sTBI). Serum samples were collected within 24 hours of admission and biomarker levels analysed with high-performance kits. The ability of biomarkers to distinguish between severity of TBI and CT-positive and CT-negative patients was assessed. Results: Among 189 patients recruited, neurofilament light (NF-L) was obtained from 175 patients with TBI and 40 controls. S100 calcium-binding protein B (S100B), heart fatty-acid binding protein (H-FABP) and interleukin-10 (IL-10) were analysed for 184 patients with TBI and 39 controls. There were statistically significant differences between levels of all biomarkers between the severity classes, but none of the biomarkers distinguished patients with moTBI from patients with sTBI. Patients with mTBI discharged from the ED had lower levels of IL-10 (0.26, IQR=0.21, 0.39 pg/mL), H-FABP (4.15, IQR=2.72, 5.83 ng/mL) and NF-L (8.6, IQR=6.35, 15.98 pg/mL) compared with those admitted to the neurosurgical ward, IL-10 (0.55, IQR=0.31, 1.42 pg/mL), H-FABP (6.022, IQR=4.19, 20.72 ng/mL) and NF-L (13.95, IQR=8.33, 19.93 pg/mL). We observed higher levels of H-FABP and NF-L in older patients with mTBI. None of the biomarkers or their combinations was able to distinguish CT-positive (n=36) or CT-negative (n=58) patients with mTBI from controls. Conclusions: S100B, H-FABP, NF-L and IL-10 levels in patients with mTBI were significantly lower than in patients with moTBI and sTBI but alone or in combination, were unable to distinguish patients with mTBI from orthopaedic controls. This suggests these biomarkers cannot be used alone to diagnose mTBI in trauma patients in the acute setting. Data availability statement: Data are available on reasonable request. De-identified clinical, imaging and biochemical data not published within the article can be shared with a qualified investigator by request

    Trajectories of interleukin 10 and heart fatty acid-binding protein levels in traumatic brain injury patients with or without extracranial injuries

    Get PDF
    BackgroundInterleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have gained interest as diagnostic biomarkers of traumatic brain injury (TBI), but factors affecting their blood levels in patients with moderate-to-severe TBI are largely unknown.ObjectiveTo investigate the trajectories of IL-10 and H-FABP between TBI patients with and without extracranial injuries (ECI); to investigate if there is a correlation between the levels of IL-10 and H-FABP with the levels of inflammation/infection markers C-reactive protein (CRP) and leukocytes; and to investigate if there is a correlation between the admission level of H-FABP with admission levels of cardiac injury markers, troponin (TnT), creatine kinase (CK), and creatine kinase MB isoenzyme mass (CK-MBm).Materials and methodsThe admission levels of IL-10, H-FABP, CRP, and leukocytes were measured within 24 h post-TBI and on days 1, 2, 3, and 7 after TBI. The admission levels of TnT, CK, and CK-MBm were measured within 24 h post-TBI.ResultsThere was a significant difference in the concentration of H-FABP between TBI patients with and without ECI on day 0 (48.2 ± 20.5 and 12.4 ± 14.7 ng/ml, p = 0.02, respectively). There was no significant difference in the levels of IL-10 between these groups at any timepoints. There was a statistically significant positive correlation between IL-10 and CRP on days 2 (R = 0.43, p &lt; 0.01) and 7 (R = 0.46, p = 0.03) after injury, and a negative correlation between H-FABP and CRP on day 0 (R = -0.45, p = 0.01). The levels of IL-10 or H-FABP did not correlate with leukocyte counts at any timepoint. The admission levels of H-FABP correlated with CK (R = 0.70, p &lt; 0.001) and CK-MBm (R = 0.61, p &lt; 0.001), but not with TnT.ConclusionInflammatory reactions during the early days after a TBI do not significantly confound the use of IL-10 and H-FABP as TBI biomarkers. Extracranial injuries and cardiac sources may influence the levels of H-FABP in patients with moderate-to-severe TBI

    Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury

    Get PDF
    Background: Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim: To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100β, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods: Blood samples from patients with acute TBI (all severities) were collected &lt;24 h post trauma. The outcome was measured &gt;6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE≥5)/unfavorable outcome (GOSE ≤ 4) and complete (GOSE = 8)/incomplete (GOSE ≤ 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results: When sensitivity was set at 95-100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion: Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100β and clinical parameters improves outcome prediction models in TBI.</p

    Admission Levels of Interleukin 10 and Amyloid β 1–40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury

    Get PDF
    BACKGROUND: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). OBJECTIVE: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. MATERIALS AND METHODS: ighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of β-amyloid isoforms 1–40 (Aβ40) and 1–42 (Aβ42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale—Extended 5–8, n = 49) and unfavorable (Glasgow Outcome Scale—Extended 1–4, n = 33) groups. The outcome was assessed 6–12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90–100%. RESULTS: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9–100) and specificity of 22.4% (95% CI: 10.2–32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1–4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were Aβ40, Aβ42, and neurofilament light. The optimal panel included IL-10, Aβ40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7–6.2) with a sensitivity of 90.9% (95% CI: 81.8–100) and specificity of 59.2% (95% CI: 40.8–69.4). CONCLUSION: Admission plasma levels of IL-10 and Aβ40 significantly improve the prognostication ability of the HCTS after TBI

    INTERLEUKIN 10 AND HEART FATTY-ACID BINDING PROTEIN AS EARLY OUTCOME PREDICTORS IN PATIENTS WITH TRAUMATIC BRAIN INJURY

    Get PDF
    Background: Patients with traumatic brain injury (TBI) exhibit a variable and unpredictable outcome. The proteins interleukin 10 (IL-10) and heart fatty acid-binding protein (H-FABP) have shown predictive values for the presence of intracranial lesions. Aim: To evaluate the individual and combined outcome prediction ability of IL-10 and H-FABP, and to compare them to the more studied proteins S100β, glial fibrillary acidic protein (GFAP), and neurofilament light (NF-L), both with and without clinical predictors. Methods: Blood samples from patients with acute TBI (all severities) were collected 6 months post injury using the Glasgow Outcome Scale Extended (GOSE) score, dichotomizing patients into: (i) those with favorable (GOSE≥5)/unfavorable outcome (GOSE ≤ 4) and complete (GOSE = 8)/incomplete (GOSE ≤ 7) recovery, and (ii) patients with mild TBI (mTBI) and patients with TBIs of all severities. Results: When sensitivity was set at 95–100%, the proteins' individual specificities remained low. H-FABP showed the best specificity (%) and sensitivity (100%) in predicting complete recovery in patients with mTBI. IL-10 had the best specificity (50%) and sensitivity (96%) in identifying patients with favorable outcome in patients with TBIs of all severities. When individual proteins were combined with clinical parameters, a model including H-FABP, NF-L, and ISS yielded a specificity of 56% and a sensitivity of 96% in predicting complete recovery in patients with mTBI. In predicting favorable outcome, a model consisting IL-10, age, and TBI severity reached a specificity of 80% and a sensitivity of 96% in patients with TBIs of all severities. Conclusion: Combining novel TBI biomarkers H-FABP and IL-10 with GFAP, NF-L and S100β and clinical parameters improves outcome prediction models in TBI

    Somatostatin receptor 2A in gliomas: Association with oligodendrogliomas and favourable outcome

    Get PDF
    Somatostatin receptor subtype 2A (SSTR2A) is a potential therapeutic target in gliomas. Data on SSTR2A expression in different glioma entities, however, is particularly conflicting. Our objective was to characterize SSTR2A status and explore its impact on survival in gliomas classified according to the specific molecular signatures of the updated WHO classification. In total, 184 glioma samples were retrospectively analyzed for SSTR2A expression using immunohistochemistry with monoclonal antibody UMB-1. Double staining with CD68 was used to exclude microglia and macrophages from analyses. SSTR2A staining intensity and its localization in tumor cells was evaluated and correlated with glioma entities and survival. Diagnoses included 101 glioblastomas (93 isocitrate dehydrogenase (IDH) -wildtype, 3 IDH-mutant, 5 not otherwise specified (NOS)), 60 astrocytomas (22 IDH-wildtype, 37 IDH-mutant, 1 NOS), and 23 oligodendrogliomas (19 IDH-mutant and 1p/19q-codeleted, 4 NOS). SSTR2A expression significantly associated with oligodendrogliomas (79% SSTR2A positive) compared to IDH-mutant or IDH-wildtype astrocytomas (27% and 23% SSTR2A positive, respectively), and especially glioblastomas of which only 13% were SSTR2A positive (p < 0.001, Fisher's exact test). The staining pattern in glioblastomas was patchy whereas more homogeneous membranous and cytoplasmic staining was detected in oligodendrogliomas. Positive SSTR2A was related to longer overall survival in grade II and III gliomas (HR 2.7, CI 1.2-5.8, p = 0.013). In conclusion, SSTR2A expression is infrequent in astrocytomas and negative in the majority of glioblastomas where it is of no prognostic significance. In contrast, oligodendrogliomas show intense membranous and cytoplasmic SSTR2A expression, which carries potential diagnostic, prognostic, and therapeutic value
    • …
    corecore