72 research outputs found

    Electronic structure and optical properties of ZnX (X=O, S, Se, Te)

    Full text link
    Electronic band structure and optical properties of zinc monochalcogenides with zinc-blende- and wurtzite-type structures were studied using the ab initio density functional method within the LDA, GGA, and LDA+U approaches. Calculations of the optical spectra have been performed for the energy range 0-20 eV, with and without including spin-orbit coupling. Reflectivity, absorption and extinction coefficients, and refractive index have been computed from the imaginary part of the dielectric function using the Kramers--Kronig transformations. A rigid shift of the calculated optical spectra is found to provide a good first approximation to reproduce experimental observations for almost all the zinc monochalcogenide phases considered. By inspection of the calculated and experimentally determined band-gap values for the zinc monochalcogenide series, the band gap of ZnO with zinc-blende structure has been estimated.Comment: 17 pages, 10 figure

    Proband and Familial Autoimmune Diseases Are Associated With Proband Diagnosis of Autism Spectrum Disorders

    Get PDF
    Objective: There is evidence that parental autoimmune diseases (ADs) are associated with autism spectrum disorders (ASD) in offspring. The association between offspring ASD and ADs diagnosed in siblings and probands remains less clear. We examined whether proband and familial diagnoses of ADs were associated with increased odds of ASD in probands.Method: The study is based on a nested case-control design that used data from a large national birth cohort (N = 1.2 million) in Finland. There were 4,600 cases of ASD and controls matched 1:4 on date of birth, sex, and residence. Data were accessed from national medical, birth, and central registries.Results: Probands had a statistically significant increase in odds of ASD when they (adjusted odds ratio [OR] = 1.2), their mother (adjusted OR = 1.1), or their sibling (adjusted OR = 1.2) were diagnosed with an AD. With regard to specific ADs, we found a statistically significant increase in odds of ASD in probands diagnosed with autoimmune thyroiditis (adjusted OR = 2.7). Further analyses considering ADs by body system yielded a statistically significant increase in odds of ASD in probands with ADs associated with the central/peripheral nervous (adjusted OR = 4.8) and skin/mucous membrane (adjusted OR = 1.3) systems. Probands of mothers diagnosed with ear/eye (adjusted OR = 1.6) or respiratory (adjusted OR = 1.4) ADs, or siblings diagnosed with skin/mucous membrane ADs (adjusted OR = 1.3) also had increased odds of ASD.Conclusion: The findings suggest that there may be common pathogenic, developmental mechanisms related to autoimmunity that are associated with the etiology of ASD.</p

    Surface magnetic properties and domains observation in as-quenched and annealed FeNbB ribbons

    Get PDF
    The longitudinal magneto-optical Kerr effect (MOKE) combined with the magneto-optical microscopy is used to investigate the surface magnetic anisotropy and the domain behavior in as-quenched (AQ) and strain-annealed (SA) FeNbB ribbons. X-ray diffraction, conversion electron Mössbauer spectroscopy (CEMS), and scanning electron microscopy (SEM) confirmed the existence of approximately View the MathML source thick magnetically harder layer on the ribbon air side, consisting of crystallites embedded in an amorphous matrix. The underneath bulk phase is amorphous and magnetically soft. Residual anisotropies and the domain patterns (wide in-plane domains with 180ring operator walls and narrow fingerprint domains) corresponding to amorphous phase are mainly caused by the internal stresses originating from the rapid quenching process. In the surface crystalline phase they are gradually overlapped by strip domains with magnetization directions almost perpendicular to the ribbon axis. The anisotropy changes caused by additional annealing and straining of the samples are shown and discussed in detail

    A new phenomenon on the surface of FINEMET alloy

    No full text
    This paper is devoted to the analysis of quadratic magneto-optical effects (QMOKE) newly observed at the surface of FINEMET-type Fe73.5Si13.5Nb3Cu1B9 ribbons annealed at temperatures of 733 K and 743 K. A strongly inhomogeneous surface microstructure detected by grazing incident X-ray diffraction (GIXRD), scanning (SEM) and transmission (TEM) electron microscopy is responsible for amplitude and sign changes of the QMOKE in different sample places. Signals in saturation determined by an 8-directional method confirm the prevailing influence of M L M T contributions at some places of a surface and of M2L−M2T at other ones, where M L and M T are in-plane longitudinal and transversal magnetization components. This behavior is explained by random orientation of nanocrystals and/or clusters of the nanometer size (typically units of nm) in the surface layers. The maximal QMOKE magnitude in saturation reaches at some places as much as 0.2 mrad, which is approximately three times lower than the highest contribution observed in Co2FeSi Heusler compounds.Web of Science2641352134

    Strong uniaxial magnetic anisotropy of nanostripes obtained by cutting thin epitaxial Fe layer using the atomic saw method

    No full text
    We have applied the "atomic saw" method developed on semiconductor heterostructures to cut thin epitaxial Fe films deposited on (001) MgO substrate into Fe nanostripes. This method is based on dislocation slipping. We have controlled the slip along the (110) MgO planes and obtained Fe stripes along the [110] direction. We present the magnetic study of 2- and 5-nm-thick Fe films which have been cut by this method, with a deformation up to 8%. The surface of the deformed film, studied by atomic force microscopy, is characterized by regular steps, a few nm high, and from 50 nm to 2 µm wide, depending on the slipping plane density. Strong uniaxial magnetic anisotropy has been observed by magneto-optical measurements. Surprisingly, the easy magnetic axis is perpendicular to the nanostripes. Various possible mechanisms are discussed. However, it results probably in the relaxation of the elastic strain field at the Fe/MgO interface

    Experimental demonstration of anomalous nonreciprocal optical response of 1D periodic magnetoplasmonic nanostructures

    No full text
    In this paper we analyze the optical and transversal magnetooptical (MO) response of magnetoplasmonic (MP) nanostructures. The MP structure is a 1D periodic gold grating fabricated by lift-off technique on the MO dielectric substrate (Bi-substituted yttrium iron garnet BixY3−xFe5O12). Following our recent theoretical work (Opt. Express 21, pp. 2174121755, Sep 2013.), we confirm here experimentally the predicted dependence of the MO response on the geometry of the grating, that is directly attributed to the anticrossing behavior of the Fabry-Perot (FP) resonance in the grating's slits and the surface plasmon resonances (SPPs) at its interfaces. The experimental results were achieved by Mueller matrix spectroscopic ellipsometry. Observed fine tuning of the transverse magneto-optic Kerr opens up new possibilities for the design of compact nonreciprocal devices

    Depth-sensitive characterization of surface magnetic properties of as-quenched FeNbB ribbons

    Get PDF
    The longitudinal magneto-optical Kerr effect (MOKE) is used to study the surface magnetic properties of as-quenched FeNbB ribbons. MOKE surface hysteresis loops measured from both ribbon sides confirm different magnetic behavior. Wheel ribbon side shows heterogeneous (crystalline/amorphous) properties, thickness of crystalline phase (about 3 nm) was established by comparing the measured magneto-optical angles of Kerr rotation and ellipticity at different incident angles with the theoretical model. Effective crystalline phase observed at shiny ribbon side is harder (coercive field about 40 Oe) than that on wheel side and penetrates deeper into the material volume. Its thickness 1.3 m estimated from the weight reduction of the ribbon during surface etching is in good agreement with cross-section image obtained using the scanning electron microscopy (SEM). The sources of magnetoelastic anisotropy were identified in the bulk as well as on the ribbon surface using the magneto-optical Kerr microscopy
    corecore