1,975 research outputs found

    Using food-web theory to conserve ecosystems

    Get PDF
    © 2016, Nature Publishing Group. All rights reserved.Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes

    The Distribution and Abundance of Resources Encountered by a Forager

    Get PDF

    Changes in seed dispersal processes and the potential for between-patch connectivity for an arid land daisy

    Get PDF
    Dispersal is a major and critical process in population biology that has been particularly challenging to study. Animals can have major roles in seed dispersal even in species that do not appear specifically adapted to animal-aided dispersal. This can occur by two processes: direct movement of diaspores by animals and modification of landscape characteristics by animals in ways that greatly influence dispersal. We exploited the production of large, persistent dispersal structures (seed heads, henceforth) by Erodiophyllum elderi (Asteraceae), a daisy from arid Australia, to further understand secondary dispersal. Seed head dispersal on and off animal tracks in eight E. elderi patches was monitored for 9.5 months by periodically recording the location of marked seed heads. Sites were located inside a reserve that excludes sheep but not kangaroos, and in a nearby area with both kangaroos and sheep. The distance moved and likelihood of seed head movement was higher in areas with sheep, and especially along animal tracks. There was clear evidence that seed heads were channeled down animal tracks during large rainfall events. Seed head dispersal away from patches occurred to a limited extent via their physical contact with sheep and potentially via wind dispersal. Thus, the advantages of this study system allowed us to demonstrate the two postulated effects of herbivores on dispersal via direct movement of seed heads, and two distinct indirect effects through landscape modification by herbivores from the creation of animal tracks and the denudation of vegetation.Louise M. Emmerson, José M. Facelli, Peter Chesson, Hugh Possingham, and Jemery R. Da

    Habitat selection by 2 species of nectarivore: habitat quality isolines

    Get PDF
    I present a model predicting the distribution and abundance of two species of competing nectarivore exploiting nectar in two types of flower. The model uses a submodel of resource renewal and depletion, and the principle that individuals attempt to maximize individual fitness, to construct habitat isolines. The habitat isoline for a population of nectarivores is a line in an abundance phase-plane along which all individuals of the population, regardless of the habitat they are currently exploiting, have equal expected fitness. At equilibrium the habitat isoline determines the distribution of a population between two habitats given a fixed abundance of competitors. The habitat isolines for populations of two species exploiting two habitats can be used to predict the equilibrium distribution of both species. I illustrate the model using data about bumble bees foraging for nectar in flowers (Inouye 1978)

    A Model to Explain Ecological Parapatry

    Get PDF
    Ecological parapatry, in which pairs of largely allopatric taxa abut along common boundaries without hybridization, is often reported but seldom explained. A computer simulation model is developed that shows that parapatry between two species can be maintained by interspecific interaction on a dine of reducing ecological suitability for the competitively stronger species. In the model, a homogeneous environment requires much greater interaction strength to sustain parapatry than does a heterogeneous environment with alternate regions of favorable and poor habitat. The heterogeneous environment of the model is intended to mimic the environment near a well-studied parapatric boundary between two reptile tick species

    ALEX: A Model For The Viability Analysis Of Spatially Structured Populations

    Get PDF
    A new generic model for assessing the viability of spatially structured populations, ALEX (Analysis of the Likelihood of EXtinction), is described. Strengths and weaknesses of ALEX are discussed. ALEX only models one sex, ignores genetics, and is inadequate for modelling the dynamics of very small populations. However ALEX contains four features that make it useful for assessing the merits of different management options for populations that are distributed in a spatially complex landscape: (1) ALEX allows each patch to have different qualities including a habitat variable that may respond to catastrophes. In this way the dynamics of species which prefer a particular successional stage of a habitat can be modelled. (2) ALEX allows the user to specify a wide variety of catastrophic processes that affect and may depend on population size and/or the state of the habitat in a patch. (3) Sensitivity analysis is essential to the PVA process. ALEX allows automatic sensitivity analysis of most parameters. Although demographic stochasticity is modelled, ALEX can quickly simulate the dynamics of very large populations. (4) Modelling movement between patches by individuals is an important part of the dynamics of spatially structured populations. ALEX permits two types of movement by individuals. This allows the user to explore the importance of corridors, habitat selection, and mortality associated with dispersal

    The Role of Landscape‐Dependent Disturbance and Dispersal in Metapopulation Persistence.

    Get PDF
    The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape‐dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent

    Ranking Conservation And Timber Management Options For Leadbeater's Possum In Southeastern Australia Using Population Viability Analysis

    Get PDF
    The conservation of the endangered Leadbeater's Possum, Gymnobelideus leadbeateri, is one of the most contentious forestry issues in Australia. The challenge is to identify strategies to conserve the species in the significant portion of its range in the central highlands of Victoria (southeastern Australia) where timber harvesting occurs. We used ALEX, a simulation program for population viability analysis, to explore the effectiveness of potential forest management strategies to enhance the persistence of G. leadbeateri in areas of wood production. Our study focused on the relationship between the risk of metapopulation extinction and (1) the number and spatial arrangement of 50-ha logging areas that could be reserved from timber harvesting and (2) the impacts of post-fire salvage logging in reserved areas. We modeled complex patch structures within two forest blocks (Murrindindi and Steavenson) that were based on maps of both existing patches of suitable habitat for G. leadbeateri and the location of potential logging areas. We recorded high values for the probability of extinction of metapopulations of G. leadbeateri when existing strategies for the conservation of the species within the Murrindindi and Steavenson Forest Blocks were modeled. Exclusion of salvage logging operations from burned, old-growth forests significantly improved the species' prospects of survival in both the short and long term. Withdrawal of timber harvesting from some proposed logging coupes made a significant, positive long-term contribution to metapopulation persistence. But there will be a delay of at least 150 years until areas set aside now make a significant contribution to metapopulation persistence. This is the time required for existing stands of regrowth to develop old-growth characteristics that are an essential habitat component for G. leadbeateri. We examined the effectiveness of different designs for setting aside a total reserved area of 300 ha. These ranged from a single 300-ha reserve to 12, 25-ha reserves. Populations in smaller reserves were vulnerable to extinction from demographic stochasticity and environmental variability. Conversely, a small number of larger reserves were susceptible to destruction in a single, catastrophic wildfire, highlighting the need for several dispersed reserves. Analyses of the sensitivity of various management options to variations in fire frequency and extent, movement capability, and a wide range of other factors indicated that the conservation strategy that gave the best relative outcome for G. leadbeateri was both to set aside several 50 to 100-ha reserves in every forest block and to preclude post-fire salvage logging operations from these areas if they burned in a wildfire

    Patchy populations in stochastic environments: Critical number of patches for persistence

    Get PDF
    We introduce a model for the dynamics of a patchy population in a stochastic environment and derive a criterion for its persistence. This criterion is based on the geometric mean (GM) through time of the spatial-arithmetic mean of growth rates. For the population to persist, the GM has to be greater than or equal to1. The GM increases with the number of patches (because the sampling error is reduced) and decreases with both the variance and the spatial covariance of growth rates. We derive analytical expressions for the minimum number of patches (and the maximum harvesting rate) required for the persistence of the population. As the magnitude of environmental fluctuations increases, the number of patches required for persistence increases, and the fraction of individuals that can be harvested decreases. The novelty of our approach is that we focus on Malthusian local population dynamics with high dispersal and strong environmental variability from year to year. Unlike previous models of patchy populations that assume an infinite number of patches, we focus specifically on the effect that the number of patches has on population persistence. Our work is therefore directly relevant to patchily distributed organisms that are restricted to a small number of habitat patches

    Interacting populations in heterogeneous environments

    Get PDF
    To optimally manage a metapopulation, managers and conservation biologists can favor a type of habitat spatial distribution (e.g. aggregated or random). However, the spatial distribution that provides the highest habitat occupancy remains ambiguous and numerous contradictory results exist. Habitat occupancy depends on the balance between local extinction and colonization. Thus, the issue becomes even more puzzling when various forms of relationships - positive or negative co-variation - between local extinction and colonization rate within habitat types exist. Using an analytical model we demonstrate first that the habitat occupancy of a metapopulation is significantly affected by the presence of habitat types that display different extinction-colonization dynamics, considering: (i) variation in extinction or colonization rate and (ii) positive and negative co-variation between the two processes within habitat types. We consequently examine, with a spatially explicit stochastic simulation model, how different degrees of habitat aggregation affect occupancy predictions under similar scenarios. An aggregated distribution of habitat types provides the highest habitat occupancy when local extinction risk is spatially heterogeneous and high in some places, while a random distribution of habitat provides the highest habitat occupancy when colonization rates are high. Because spatial variability in local extinction rates always favors aggregation of habitats, we only need to know about spatial variability in colonization rates to determine whether aggregating habitat types increases, or not, metapopulation occupancy. From a comparison of the results obtained with the analytical and with the spatial-explicit stochastic simulation model we determine the conditions under which a simple metapopulation model closely matches the results of a more complex spatial simulation model with explicit heterogeneity
    corecore