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Abstract 25 

To optimally manage a metapopulation, managers and conservation biologists can favor a type of 26 

habitat spatial distribution (e.g. aggregated or random). However, the spatial distribution that 27 

provides the highest habitat occupancy remains ambiguous and numerous contradictory results 28 

exist. Habitat occupancy depends on the balance between local extinction and colonization. 29 

Thus, the issue becomes even more puzzled when various forms of relationships - positive or 30 

negative co-variation - between local extinction and colonization rate within habitat types exist.  31 

Using an analytical,model we demonstrate first that the habitat occupancy of a metapopulation is 32 

significantly affected by the presence of habitat types that display different extinction-33 

colonization dynamics, considering (i) variation in extinction or colonization rate and (ii)  34 

positive and negative co-variation between the two processes within habitat types. We 35 

consequently examine, with a spatially-explicit stochastic simulation model, how different 36 

degrees of habitat aggregation affect occupancy predictions under similar scenarios. An 37 

aggregated distribution of habitat types provides the highest habitat occupancy when local 38 

extinction risk is spatially heterogeneous and high in some places, while a random distribution of 39 

habitat provides the highest habitat occupancy when colonization rates are high. Because spatial 40 

variability in local extinction rates always favors aggregation of habitats, we only need to know 41 

about spatial variability in colonization rates to determine whether aggregating habitat types 42 

increases, or not, metapopulation occupancy. From a comparison of the results obtained with the 43 

analytical and with the spatial-explicit stochastic simulation model we, finally, determine the 44 

conditions under which a simple metapopulation model closely matches the results of a more 45 

complex spatial simulation model with explicit heterogeneity.  46 
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1. Introduction 50 

Metapopulation models are important tools for choosing management options for threatened or 51 

declining species (Gyllenberg and Hanski, 1997; Hanski, 1999; Hanski and Ovaskainen, 2000; 52 

Reed, 2004; McCarthy et al., 2005, Nicol et al. 2010; Ross and Pollet, 2010). They predict the 53 

dynamics of structured populations driven by two processes: local extinction and colonization. 54 

However, assumptions inherent to most of these models, uniform local extinction risk and 55 

homogenous colonization, are not applicable to most species. Although the effect of distance 56 

upon colonization and the density-dependent risk of local extinction have been incorporated into 57 

metapopulation models (Hanski, 1999; Hanski and Ovaskainen, 2000, Stover et al., 2011), 58 

spatial variations in local extinction and colonization events can occur in many other ways. 59 

Indeed, as showed by Poethke et al. (2003), local extinction risk and colonization rates can 60 

display positive, negative or even more ambiguous correlations in space.  61 

Within the range of a species, local extinction risk can vary from patch to patch due to the 62 

heterogeneity of the environment (May, 1973; Lande, 1993; Isaac and Cowlishaw, 2004; 63 

Melbourne and Hastings, 2008; Cowlishaw et al., 2009) or due to environmental stresses, human 64 

activities or density (Wright and Reeves, 1992; Koh et al., 2004; Cardillo, 2005). Similar to local 65 

extinction rates, colonization rates can be variable in space. In heterogeneous environments, 66 

habitat quality differs which creates variation in habitat productivity and very productive 67 

populations (sources) are more likely to colonize other less productive patches (sinks) (Pulliam, 68 

1988; Morris, 1991; Kawecki, 1995; Holt, 1996; Saether et al., 1999). Another source of spatial 69 

variability in colonization rate has been observed for several species when dispersal is driven by 70 

prevailing winds, ocean and river currents (Roberts, 1997; Gornall et al., 1998; Cowen et al., 71 
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2000; James et al., 2002; Thorrold, 2006; Cheal et al., 2007; Bay et al., 2008; Shima and 72 

Swearer, 2009, Kininmonth et al., 2011).  73 

Various forms of relationships between local extinction and colonization rate have been 74 

described. Positive correlation between local extinction and colonization rates is a commonly 75 

used assumption in metapopulation models where the number of colonizers is proportional to the 76 

area of a patch and extinction probability decreases with patch area (Hanski, 1999; Hanski and 77 

Ovaskainen, 2000).  In this case large habitat patches have low local extinction rate and send 78 

more colonizers, while small habitat patches are more prone to extinction and send less 79 

colonizers. However, negative correlation between local extinction and colonization rates has 80 

been shown in amphibian and insect metapopulations (Gulve, 1994; Roff, 1994; Denno et al. 81 

1996; Hill et al., 1999; Bowler and Benton, 2005) as well as experiments in artificial 82 

metapopulations (Friedenberg, 2003). Individuals leave habitat types with high local extinction 83 

risk and stay in habitats where extinction risk is low, resulting in an increase in the number of 84 

colonizers sent by a population with high local extinction rate (Johnson and Gaines, 1990; 85 

Wiener and Tuljapurkar, 1994; Olivieri et al., 1995; Clobert et al., 2001; Mathias et al., 2001). 86 

Similarly, evolutionary models support the notion that a negative correlation between local 87 

colonization and extinction rates might be common (Poethke et al., 2003; Ronce, 2007). Indeed, 88 

within a metapopulation, high local extinction risk creates habitat patches with underexploited 89 

resources. Therefore, colonizers from overcrowded habitat have an opportunity to become a 90 

founder of a new population in underexploited or empty habitat. High colonization rate might 91 

thus be favored in populations where local extinction rate is high, while populations that undergo 92 

low extinction rate might also have low colonization rate.  93 
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Given the diversity of extinction-colonization dynamics that is expected to be found in a 94 

metapopulation, it is surprising that the impact of these processes on species persistence and 95 

habitat occupancy is rarely investigated. Even more importantly, populations with different local 96 

extinction-colonization dynamics are expected to coexist in the same metapopulation in many  97 

circumstances. Indeed, local habitat characteristics (quality, disturbances, etc.) can drive local 98 

population dynamics and, in heterogeneous environment, the spatial variability of habitat 99 

characteristics can be high. Therefore, the question of their spatial distribution appears to be 100 

determinant to estimate metapopulation persistence with accuracy.  101 

The types of spatial distribution of habitats that provides the highest habitat occupancy remains 102 

ambiguous and numerous contradictory results exist. Indeed, recent studies showed that it is 103 

beneficial to improve the quality of some groups of habitat patches to prevent them from high 104 

extinction risk even at the cost of having others at low quality (North and Ovaskainen, 2007; 105 

Theodorou et al., 2009) – a kind of subpopulation triage (McDonald-Madden et al., 2008).  Other 106 

studies have shown a decrease in metapopulation persistence when local extinction risk is 107 

spatially aggregated (e.g. Ovaskainen et al., 2002; Johst and Drechsler, 2003; Vuilleumier et al., 108 

2007) or when the population or environmental characteristics are autocorrelated (e.g. 109 

Tuljapurkar, 1982; Petchey et al., 1997; Pike et al., 2004; Tuljapurkar and Haridas, 2006). Those 110 

studies argue that a local population should benefit from being surrounded by populations with a 111 

low extinction probability that are likely to provide colonists. Thus, a random distribution of 112 

habitat patches may be the best spatial configuration to prevent local population extinction 113 

because all patches are likely to have near neighbours that have both low extinction rates and 114 

provide many colonists.  115 
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Here, we use a simulation model, to understand how habitat occupancy in a metapopulation is 116 

affected by the spatial heterogeneity, spatial variation and local co-variation in local extinction 117 

and colonization rates within a habitat type.  We also document the reliability of predictions of 118 

analytic metapopulation models if there is undescribed spatial heterogeneity. The answers to 119 

these questions give new insights on the persistence of species in heterogeneous and stochastic 120 

environments.  121 

2. Metapopulation models  122 

2.1 Analytical metapopulation model 123 

The dynamics of a metapopulation have been described first by Levins (1969, 1970) in an island 124 

model in which n equivalent patches have the same probability of colonizing any of the n-1 other 125 

patches. The time-continuous and deterministic model describes the change in the fraction of 126 

occupied patches p, considers local extinction rate (e) and colonization rate (c). 127 

 .     (1)
 

128 

The positive equilibrium value for the proportion of occupied habitat is 129 

  .     (2) 130 

This model assumes homogeneity in extinction and colonization rate. Thus, we also consider a 131 

finite heterogeneous metapopulation composed of n patches in which two habitat types are 132 

present in equal proportion each with specific local extinction rates ( ) and colonization rates 133 

1 2( , )c c . The colonization rate characterizes the number of colonizers that a population of one 134 

(1 )
dp
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habitat type successfully sends to colonize another habitat. The evolution of the proportion of 135 

occupied patches in habitat type 1, 1p ,and in habitat type 2, 2p , can be described as follow:  136 

      (3) 137 

Note that 1 2p p p  . The dynamic described by this equation can be interpreted as follow: 138 

Each habitat patch (habitat 1 and habitat 2) can be in one of the two states: occupied or empty. 139 

An occupied habitat patch becomes empty according to its extinction rate (habitat 1 has an 140 

extinction rate of 1e  , habitat 2 has an extinction rate of 2e  ). An occupied habitat patch can re-141 

colonize an empty habitat (at rate 1c for the habitat 1 or 2c  for the habitat 2). From this change of 142 

state, we characterize the proportion of occupied patches for the two habitat types. 143 

When local extinction and colonization rates differ between the two habitat types, 1 2e e , and 144 

1 2c c  solutions of Eq. 3 can be found for positive occupancy in both habitat types, ,  > 0, 145 

 . (4) 146 

When local extinction rates are equal, i.e. , but colonization rates differ between habitat 147 

types, the solution of equation 1 for ,  > 0 simplifies to the Levin’s result with twice the 148 

number of patches and an average colonization rate: 149 
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  .      (5) 150 

When colonization is the same between habitat types, , but local extinction varies 151 

between habitat types, 1 2e e  equation 4 becomes: 152 

       (6) 153 

Using equations 4-6 we can explore the effect of positively and negatively correlated local 154 

extinction and correlation rates between habitat types and within habitat type on patch 155 

occupancy.  156 

2.2 Spatially explicit metapopulation simulation model 157 

To investigate the impact of the spatial distribution of the two habitat types on patch occupancy, 158 

we use a spatially explicit Markovian stochastic model that describes the evolution of habitat 159 

patch occupancy in discrete time. The metapopulation is composed of eighty patches with an 160 

equal proportion of two habitat types, labeled 1 and 2. Habitats types are distributed in an 8 by 161 

10 grid (with absorbing boundaries, Fig. 1) and differ in their susceptibility to local extinction, 162 

, and how they produce colonists. Occupied patches can re-colonize adjacent empty patches, 163 

according to a per time step probability, ic  (stepping stone migration pattern), that depends on 164 

the source habitat type i. With this model, we explore how the proportion of occupied patches is 165 

affected by the extinction-colonization dynamics described above considering three levels of 166 

aggregation of two habitat types (Fig. 1). In the Random pattern, habitat types are randomly 167 
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distributed so that the neighbourhood of any patch is statistically the same. In the Partially 168 

Random pattern, the environment is divided into two areas (e.g. North and South) and habitat 169 

type 1 has a 75% chance of being on the northern area and 25% of being on the southern area 170 

(the reverse is true for habitat 2). In the Aggregated spatial pattern, complete division of habitat 171 

types exists; habitats of type 1 are only in the northern area while habitats of type 2 are in the 172 

southern area.  173 

2.3 Model investigations 174 

Habitat occupancy obtained within the heterogeneous metapopulation will be compared with 175 

analytic solutions to the basic metapopulation model that assumes homogeneity and 176 

heterogeneity in extinction and colonization rate when there is (see also Table 1): (i) variation in 177 

local extinction rates between habitats, (ii) variation in colonization rates between habitat types, 178 

(iii) positive co-variation between local extinction and local colonization rates within a habitat 179 

type and (iv) negative co-variation between local extinction and colonization rates within a 180 

habitat type. In order to estimate total patch occupancy in the homogeneous metapopulation 181 

model (eq. 2), we averaged extinction and colonization rates over the habitat types. We also 182 

consider prediction of habitat occupancy of each habitat type separately, assuming that the 183 

patches of the different habitat types form two different and separate metapopulations 184 

(considering eq. 2 for each habitat types).   185 

In the simulation model, to investigate the impact on habitat occupancy of positive co-variation 186 

between local extinction and local colonization rate within a habitat type, we assume that the 187 

ratio of the local extinction rate, , and local colonization rate, , is constant, i.e. i
i

i

e
A

c
 . Thus, 188 ie ic
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the habitat type with the high local extinction rate also has a high colonization rate. Similarly, in 189 

the simulation model, negative co-variation between local extinction and local colonization rate 190 

is investigated considering that the product of local extinction rate, ,  and local colonization 191 

rate, , within a habitat type is constant, i.e.  , forcing negative co-variation between 192 

local colonization and local extinction rate within a habitat type. In the simulation model, 193 

negative and positive co-variation between local extinction rate and colonization rate will also be 194 

applied either only within one habitat type or within the two habitat types. When applied only 195 

within one habitat type, the local colonization and local extinction rate value will be maintained 196 

constant within the other habitat type. When co-variation between local extinction rate and 197 

colonization rate is applied within both habitats, we consider the case where the local extinction 198 

rate is low within one habitat and high within the other. Cases and ranges of parameters values 199 

considered are described in Table 1. For the simulation model, the number of occupied habitat 200 

patches of both habitat types is recorded after 1000 time-steps from 1000 replicates. Simulations 201 

started with all habitat patches occupied. For each of replicated run, a new habitat types 202 

distribution is generated for the Random and Partially Random pattern (Fig 1). Results obtained 203 

with the simulation model are compared with the analytical solutions of the metapopulation 204 

model assuming homogeneity (equation 5) and heterogeneity (equation 1) in extinction and 205 

colonization rate. 206 

3. Results 207 

3.1 Colonization rate homogenous; local extinction rate varies between habitat types:  208 

The metapopulation can persist as long as the local extinction rate in one of the habitat type 209 

remains below the local colonization rate ( ) (Fig. 2). When the local extinction rate is 210 

ie

ic i ie c B

i je c e 
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high in one habitat type (habitat 1 in fig 3a), all simulation and analytical results agree and 211 

predict for the habitat type (habitat 1) a strong decrease in habitat occupancy as the local 212 

extinction rate increases. However, the estimates of habitat occupancy differ substantially 213 

between the spatial distributions of habitat types considered. The highest proportion of occupied 214 

patches is obtained when the habitat types are aggregated, the lowest with a random distribution 215 

of habitat types (Fig. 2a). Analytical predictions of total habitat occupancy lie in-between 216 

simulation predictions obtained by aggregated and random configurations of habitat types, the 217 

latter being the lowest (Fig. 2a). However, when both local extinction rates exceed local 218 

colonization rate differences in habitat occupancy between spatial configurations of habitat types 219 

are small. As expected, when local extinction rates are the same between habitat types our results 220 

correspond to the solution of eq. 1.  221 

3.2 Local extinction rates homogenous; local colonization rates vary between habitat types. 222 

Local colonization rates in one habitat type (habitat 1) (Fig 2b) impact the occupancy in the other 223 

habitat type (habitat 2) in different ways depending on whether or not it exceeds the local 224 

extinction rate (in habitat 1). When the local colonization rate in habitat type 1 is lower than local 225 

extinction rate, the aggregated distribution of habitat types provides the highest number of 226 

occupied patches. In contrast, when the local colonization rate in habitat type 1 is high, the 227 

highest patch occupancy is observed when habitat types are randomly distributed (Fig 2b). 228 

Analytical results assuming homogeneity correspond to the simulation results considering 229 

aggregation of habitats while analytical results assuming heterogeneity remain closer to the 230 

simulation results obtained when habitat types are randomly distributed.  231 

3.3 Both local colonization and local extinction rates vary between habitat types.  232 
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Results from the analytical model (eq. 3) show that differences in local colonization rates and 233 

local extinction rate have different impacts on habitat occupancy (figure 3). Indeed, as local 234 

colonization in one habitat type (habitat 1) increases, occupancy in the other habitat type (habitat 235 

2) quickly increases. This occurs even when, in habitat 1, the local extinction rate is high and 236 

occupancy is low (Fig. 3a). When colonization rate in habitat 1 is high, high values of habitat 2 237 

occupancy are observed whatever local extinction rate considered in habitat 1. In contrast, 238 

variations in local extinction rate in habitat type 1 slightly impact occupancy in habitat 2 (Fig 239 

3a). Impact of high extinction rates in one habitat will depends on the extinction-colonization 240 

dynamics in the other habitat type (Fig 3a and 3b). As show in Figure 3b, the occupancy of 241 

habitat type 1 is barely impacted by high extinction rate in the habitat 2, this occurs when as long 242 

as locally extinction rate in habitat 1 is lower than colonization rate, otherwise impacts can be 243 

strong. Interestingly, across a similar range of values of local extinction and colonization rates 244 

(Fig 3a and 3b), total habitat occupancy will increase a lot in situations where spatial 245 

heterogeneity in extinction and colonization rate concerns different habitat types (Fig. 3b) 246 

compared to situation where it concerns one habitat type (Fig. 3a).  247 

3.4 Local colonization and local extinction co-vary positively within habitat types. 248 

Similar to the situation where local extinction rate and local colonization rate vary between 249 

habitat types (Fig. 3) occupancy of one habitat type estimated by the simulation model is 250 

substantially affected by extinction and colonization in the other habitat type. However, the 251 

impact very much depends on the spatial configuration of the habitat types (Fig. 4a and 4b). 252 

Being next to a habitat type that has a high local colonization rate is beneficial and can override 253 

the effect of a high local extinction risk. Similarly, being next to a habitat type in which the 254 

colonization rate is reduced, reduces habitat occupancy locally. A random habitat type 255 
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distribution is therefore the spatial configuration where habitat occupancy can be the most 256 

variable when co-variation between local extinction and local colonization occurs, while habitat 257 

type aggregation buffers this effect (Fig. 4). Co-variation between local extinction and local 258 

colonization within the two habitat types amplifies this effect (Fig 4b), and occupancy in one 259 

habitat type can either be strongly enhanced or reduced at a local scale. When looking at the total 260 

habitat occupancy, the variability created by co-variation of local extinction and colonization rate 261 

induces a reduction of the total habitat occupancy and the most favorable habitat type 262 

distribution is aggregated. Again here, analytical results considering heterogeneity are in 263 

agreement with simulations predictions, being closer to the simulation results in which the 264 

habitat types have a partially random configuration. However, predictions are poor when local 265 

colonization and local extinction rates are either high or low.  266 

3.5 Local colonization and local extinction rate co-vary negatively within habitat types. 267 

Under this scenario, as when local colonization and local extinction rate co-vary positively 268 

within a habitat type, the distribution of habitat types strongly impacts the expected habitat 269 

occupancy (Fig. 5). When co-variation between local extinction and colonization rate occurs 270 

only within one habitat type (Fig 5a), a random distribution of habitat types produces the highest 271 

habitat occupancy when local extinction is low and colonization is high, while aggregated 272 

distribution of habitat types produces the highest habitat occupancy when local extinction rates 273 

are high and colonization rates are low. Again, the impact of spatial heterogeneity in extinction 274 

and colonization rate is enhanced when there is a random distribution of habitat types, where 275 

habitat occupancy can reach extreme values while an aggregated distribution of habitat types 276 

buffers the impact. The reverse results are obtained when local extinction and colonization rates 277 

co-vary negatively within both habitat types and have opposite values within each habitat type 278 
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(Fig. 5b). Random distribution of habitat types is always the best spatial configuration for total 279 

and local habitat occupancy while when habitat types are aggregated it is the worst situation (Fig. 280 

5b).  281 

When local extinction and local colonization co-vary within one habitat type only, analytical 282 

results that take into account heterogeneity are in agreement with simulations predictions, being 283 

closer to the simulation results considering partially random habitat types configuration, while 284 

analytical results that assume homogeneity perform poorly when local extinction and 285 

colonization rate are strong (Fig. 5a). Both predictions are poor when local colonization and local 286 

extinction rates co-vary negatively within both habitat types, whether or not the habitat types are 287 

aggregated or randomly distributed.  288 

4. Discussion 289 

We first discuss the conditions for which habitat types aggregation increases or decreases habitat 290 

occupancy. Then, we evaluate the adequacy of simple models when we account for spatial 291 

heterogeneity of local extinction and local colonization rate and co-variation of local extinction 292 

and local colonization rate within habitat types. Finally, we discuss the similarity of the results 293 

from our model to those of other models with more of a focus on epidemiology.  294 

4.1 Does habitat aggregation promote increased habitat occupancy? 295 

We have discovered that aggregating habitat types can increase or decrease habitat occupancy 296 

depending on relationships between local extinction and colonization rates. When the local 297 

colonization rate exceeds the local extinction in both habitat types, a random distribution of 298 

habitat types is the spatial configuration that provides the highest habitat occupancy. This is in 299 
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agreement with studies looking at the impact on habitat occupancy of aggregation of extinction 300 

processes and of environmental autocorrelation (e.g. Ovaskainen et al., 2002; Pike et al., 2004; 301 

Tuljapurkar and Haridas, 2006; Vuilleumier et al., 2007). However, when in one (and only one) 302 

of the habitat type the colonization rates is locally lower than the local extinction rates (or 303 

extinction rates exceed locally colonization rate) an aggregated distribution of habitat types 304 

provides the highest total habitat occupancy. Aggregation of habitat types favors the creation of 305 

stable sub-structures that are not affected by the presence of habitat types with high local risk of 306 

extinction and thus favors the persistence of the metapopulation. – Essentially the 307 

metapopulation persists in one habitat type and it is better that this habitat type is isolated. This 308 

result is thus in accordance with recent predictions showing that to improve metapopulation 309 

viability, it is beneficial to improve the quality of some groups of habitat patches to increase their 310 

resilience to extinction as this group of habitats will function as a partial refuge even at the cost 311 

of having others habitats at low quality (North & Ovaskainen, 2007, Elkin and Possingham, 312 

2008, Theodorou et al., 2009). Even though local populations with a high local risk of extinction 313 

will benefit from a random distribution of habitat type, it is at the cost of reducing the viability of 314 

the entire metapopulation. A random distribution of habitat types are thus favorable for species 315 

with high colonization rate while aggregation of habitat type would be beneficial for species with 316 

reduced colonization rate. Interestingly, this result is consistent with studies that investigate the 317 

impact of habitat spatial distribution on dispersal evolution. Random distribution of habitats 318 

selects for an increase of dispersal abilities while habitat aggregation selects against it (Hovestadt 319 

et al., 2001; Johst et al., 2002, Hiebeler, 2004, Kallimanis et al., 2006). Our conclusions are 320 

expected to apply to system in which numerous populations are interacting. If the colonization 321 

rate of one of the interacting populations is high, a random distribution of habitats will favor re-322 
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colonization of all habitat patches, as the chance of being in the neighboring of a population with 323 

the high colonization rate is increases. Similarly, if the extinction rate is severe in one of the 324 

interacting populations, the metapopulation would benefit from its isolation and thus aggregation 325 

of habitats having high extinction rate will provide the highest metapopulation occupancy.   326 

4.2 Reliability of simple models 327 

We would not expect the simple differential equations (eq. 1 and eq. 3) to work perfectly because 328 

they include several simplifications of the stochastic simulation: (i) there is an infinite number of 329 

habitat patches while the simulation model has a finite number of habitat patches with an 330 

absorbing boundary, (ii) every habitat patch is equally connected to every other habitat patch, 331 

while in the simulation model colonization occurs only between adjacent habitat patches, (iii) the 332 

model is deterministic in continuous time and with a continuous state space, while the simulation 333 

model accounts for stochasticity and extinction-colonization through discrete-time processes and 334 

a discrete state-space, and (iv) there is no spatial component – the location of a habitat patch is 335 

irrelevant. However, the homogeneous analytical model (eq.1) is a reasonably good predictor of 336 

the patch occupancy in the habitat when spatial distribution of habitat types is aggregated and 337 

when extinction-colonization dynamics in both habitat types do not display large differences. For 338 

some cases where strong spatial heterogeneity in extinction-colonization dynamics is present, a 339 

good fit is observed for total habitat occupancy (Fig. 3b, 5a, 5b and 6b). This is an artifact as the 340 

over estimation of habitat patch occupancy in one habitat type compensates for underestimation 341 

in the other. Similarly, predicted occupancy given by the analytical model considering spatial 342 

heterogeneity in extinction and colonization dynamics shows clear correspondences with the 343 

simulation model under many circumstances. The two models provide similar results when 344 

habitat type heterogeneity in local extinction and local colonization rate is weak and the 345 
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distribution of habitat types is partly random. Therefore, the use of this analytical model 346 

(heterogeneous model) should be avoided mainly in the situations where values of local 347 

extinction and colonization rate are highly variable between habitat types and when habitat types 348 

are aggregated. 349 

4.3 Analogy to epidemiological models  350 

Metapopulation model are analogous to basic epidemiological models that describe the dynamics 351 

of a pathogen in a host population (May and Nowak, 1994, Amarasekare and Possingham, 2001, 352 

Hess et al., 2001). If a species of interest is a pathogen, each host organism may be considered as 353 

a habitat patch that is occupied when infected. Colonization and migration are then analogous to 354 

infection and transmission while local extinction is equivalent to host death or recovery. 355 

However, metapopulation models are much simpler e.g. immune patches do not exist, a host is 356 

not killed and empty suitable patches do not arise by births (Grenfell and Harwood, 1997; 357 

Hanski, 1999; Hess et al., 2001). Although those models differ in their underlying assumptions, 358 

interestingly, similar results to our study have arisen from epidemiological models. Accounting 359 

for heterogeneity in habitat types in metapopulation models translates, in epidemiological 360 

models, into a system where pathogens can affect multiple hosts or where either host 361 

susceptibility and/or transmission rates are heterogeneous (due for example to host genetic 362 

variability, population aggregation into age groups or other spatial factors (Anderson and May, 363 

1986; Lyles and Dobson, 1993; Dwyer et al., 1997; Woolhouse et al., 1997)). Interestingly, it has 364 

been shown that host species diversity can amplify pathogen outbreaks and persistence 365 

(Anderson and May, 1991; Hess, 1996; Woolhouse et al., 1997; Woolhouse et al., 2001; 366 

Woolhouse, 2002; Dobson, 2004) – we show that occupancy can be much higher (but also 367 

lower) in metapopulations composed of two different habitat types compared to one composed of 368 
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one habitat type (Fig 3, 5 and 6). It has also been shown that species most capable of recovering 369 

from disease (low local extinction rates) can drive the other hosts to extinction (Dobson, 2004).  370 

This mirrors our result where high local extinction rates in one habitat patch can strongly affect 371 

occupancy in the other habitat.  Therefore, by analogy, our study shows that patterns of co-372 

variation and levels of spatial aggregation of host in epidemiological model are expected to have 373 

a crucial role for management of epidemics where there is host variability. Consequently our 374 

results and this modeling approach may have implications for disease management in agriculture 375 

and public health. Finally, model in epidemiology could also benefit from the integration of 376 

spatial heterogeneity in the distribution and in the interaction of populations (as done in Vincinot 377 

and Moriya 2011). 378 

5. Conclusion 379 

In natural populations, environmental heterogeneity can lead to situations where locally, in 380 

populations, extinction and colonization rate can display, positive, negative or even more 381 

ambiguous correlations in space.  382 

Patch occupancy, the quantity of interest for choosing management options, is impacted by the 383 

coexistence of different extinction-colonization dynamics within a metapopulation. Interestingly, 384 

we demonstrate that this impact can be enhanced or buffered depending on the spatial 385 

distribution of the habitats. To increase habitat occupancy, habitat aggregation should be 386 

favoured when mean local extinction risk is high and spatially variable, while random 387 

distribution of habitats should be applied when colonization rates are high and spatially 388 

heterogeneous.  389 

Finally we also show that the use of analytical models that account for heterogeneity in local 390 

extinction and colonization rate should be preferred to models that average both processes. 391 
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However, they might not be accurate in situations where extinction and colonization rate are 392 

highly variable and when habitat types are randomly distributed or aggregated in a landscape, in 393 

these cases, spatially-explicit models should be preferred.  394 
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Table 1: Parameters values of local extinction and colonization rate used for the 561 

spatially-explicit simulations. 562 

Figure 1: Three broad classes of spatial aggregation in habitat types. In each case 80 563 

patches are arranged in an 8 x 10 grid , where the habitat type distribution changes from 564 

randomly distributed to completely aggregated with abrupt boundaries. The spatial distributions 565 

of habitat types are referred to as: (a) Random, (b) Partially Random and (c) Aggregated. 566 

Figure 2: Comparison of simulation and analytical results when (a) extinction rates and 567 

(b) colonization rates, vary between habitat types. The total habitat occupancy, , habitat 1 568 

occupancy, and habitat 2 occupancy, , are presented (a) as a function of extinction rate in 569 

one habitat type with ,  and (b) as a function of colonization rate 570 

in one habitat type with ,  . Numerical solutions of equation 3 571 

(Analytical heterogeneous) and equation 1 (Analytical homogeneous) are presented with the 572 

simulation results for three different spatial configurations of habitat types (Random, Partially 573 

Random and Aggregated, see legend). The vertical line corresponds to the situation where 574 

parameters e and c are homogeneous in all habitat types. For details on parameters used see 575 

Table 1. 576 

Figure 3: Analytical solutions when extinction rates and colonization rate vary between 577 

habitat types. Occupancy of total habitat  , of habitat type 1  and habitat type 2  obtained 578 

by numerical solutions of equation 3 (Analytical heterogeneous) are presented when (a) Local 579 

extinction and local colonization rate are kept constant on one habitat type (habitat type 2, 580 
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, ) and when (b) Local colonization rate remain constant in habitat type 2 (581 

) and local extinction remain constant in habitat type 1 ( 1 0.01e  ). 582 

Figure 4: Comparison of simulation and analytical results when extinction and 583 

colonization co-vary positively within (a) one habitat type (habitat 1, , 584 

 and (b) within both habitat types ( as in (a) but with 585 

). Results for three different spatial configurations of habitat types (Random, 586 

Partially Random and Aggregated, see legend) and for the numerical solutions of equation 3 587 

(Analytical heterogeneous) and equation 1 (Analytical homogeneous) are presented. The vertical 588 

line corresponds to the situation where parameters e and c are homogeneous in all habitat types. 589 

For details on parameters used see Table 1. 590 

Figure 5: Comparison of simulation and analytical results when extinction and 591 

colonization co-vary negatively within (a) one habitat type (habitat 1, 592 

 ) and (b) within both habitat types (as in (a) 593 

but with ). Results for three different spatial configurations of habitat types 594 

(Random, Partially Random and Aggregated, see legend) and for the numerical solutions of 595 

equation 3 (Analytical heterogeneous) and equation 1 (Analytical homogeneous) are presented.  596 

The vertical line corresponds to the situation where parameters e and c are homogeneous in all 597 

habitat types. For details on parameters used see Table 1. 598 

2 0.01c  2 0.01e 

2 0.01c 

1 1 ,  1/  e c A A  
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2 2 2 1,   e c A c e  
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Table 1 

 

a To compare between the analytical and simulation models, the colonization parameter 

in the simulation model must be multiplied by the average number of neighbor habitats in the 

landscape,µ , leading to 
i i

Analytic Simulationc cµ= , in our landscapes this value is 3.2. 

 

Cases 
1e  2e  1c a 

2c a Conditions 

(i) Variation in local extinction rate 
between habitat types:  0.001-0.5 0.01 0.01 0.01 1 2e e≠  

(ii) Variation in local colonization rate 
between habitat types 0.01 0.01 0.001-0.5 0.01 1 2c c≠  

(iii) 
Positive 

co-
variation  

Within habitat 1 0.001-0.5 0.01 0.001-0.5 0.01 1

1

e
c

 = A 

Within habitat 1 and 2 0.001-0.5 0.001-0.5 0.001-0.5 0.001-0.5 1

1

e
c

 = 2

2

e
c

 = A   

(iv) Negative 
co-
variation 

Within  habitat 1 0.001-0.5 0.01 0.001-0.5 0.01 1 1e c  = B 

Within  habitat 1 and 2 0.001-0.5  0.001-0.5 0.001-0.5 0.001-0.5  1 1e c  = 2 2e c  = B 
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