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ABSTRACT: We introduce a model for the dynamics of a patchy
population in a stochastic environment and derive a criterion for its
persistence. This criterion is based on the geometric mean (GM)
through time of the spatial-arithmetic mean of growth rates. For the
population to persist, the GM has to be >1. The GM increases with
the number of patches (because the sampling error is reduced) and
decreases with both the variance and the spatial covariance of growth
rates. We derive analytical expressions for the minimum number of
patches (and the maximum harvesting rate) required for the per-
sistence of the population. As the magnitude of environmental fluc-
tuations increases, the number of patches required for persistence
increases, and the fraction of individuals that can be harvested de-
creases. The novelty of our approach is that we focus on Malthusian
local population dynamics with high dispersal and strong environ-
mental variability from year to year. Unlike previous models of patchy
populations that assume an infinite number of patches, we focus
specifically on the effect that the number of patches has on population
persistence. Our work is therefore directly relevant to patchily dis-
tributed organisms that are restricted to a small number of habitat
patches.

Keywords: environmental stochasticity, extinction, spatially distrib-
uted model, reserves, geometric mean fitness.

How patchily distributed populations persist in stochastic
environments is a fundamental question in both basic and
applied ecology. A great deal is known about how spatial
processes influence the persistence of patchy populations.
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For instance, much work has been done on how popu-
lation persistence is influenced by factors such as dispersal,
landscape structure, minimum amount of suitable habitat,
and environmental synchronization (Crowley 1981; Har-
rison and Quinn 1989; Gilpin and Hanski 1991; Hassell
et al. 1991; Adler 1993; Allen et al. 1993; Bascompte and
Solé 1995, 1998; Grenfell et al. 1995; Hanski et al. 1996).
In contrast, relatively little is known about the number of
patches required for the long-term persistence of a spatially
distributed population. Most existing models assume an
infinite number of patches, which is clearly unrealistic for
most patchily distributed organisms that are constrained
to live in a finite number of habitat patches. Investigating
how the effects of such factors as dispersal and environ-
mental stochasticity on persistence change with the num-
ber of patches is therefore an issue of high priority.

Quite a large number of species have spatially distrib-
uted populations whose dynamics are affected by severe,
density-independent environmental fluctuations (Andre-
wartha and Birch 1954). For example, many butterfly spe-
cies reproduce in discrete patches of suitable habitat. One
of the best-studied examples is Melitaea cinxia, a butterfly
inhabiting the Aland Islands in southwest Finland (Hanski
et al. 1995; Lei and Hanski 1997; Hanski 1999). This but-
terfly breeds on discrete patches of dry meadows. Because
there are local extinctions and subsequent colonizations
from other patches, regional persistence depends on the
total number of patches (Hanski et al. 1996). Let us now
imagine that the species has some economic value. In our
example, the butterfly species can be harvested to sell spec-
imens to collectors. Because harvesting imposes an addi-
tional source of mortality, population persistence would
require a larger number of patches than in the absence of
harvesting.

In marine ecosystems, several commercially exploited
species have patchily distributed populations. Examples
range from invertebrates (e.g., red sea urchin Strongylo-
centrotus franciscanus [Quinn et al. 1993] and queen conch
Strombus gigas [Stoner and Ray 1996]) to vertebrates (dif-
ferent reef fish stocks [Colin 1996]). In these cases, in-
dividuals spawn in specific areas that serve as permanent
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spawning sites (Colin 1996), producing large numbers of
pelagic larvae that disperse large distances. After devel-
oping, the juvenile or adults recruit back to the spawning
areas. Since high levels of harvesting are superimposed on
these life cycles, persistence of stocks requires an adequate
number of reproductive areas. The actual number of such
sites will depend crucially on harvesting rates.

In the above examples, the problems are population
preservation and sustainable population management.
However, some patchy populations are crop pests (Levins
1969b). Pests with a patchy distribution are also becoming
an increasing problem in marine ecosystems. Two exam-
ples are the black-striped mussel and the polychaete worm
Terebrasabella heterouncinata (see Myers et al. 2000 and
references therein). Similarly, some infectious diseases have
a patchy distribution (Grenfell and Harword 1997). In
these cases, the goal is the extermination of the population.
However, there is a lack of simple analytical theory pre-
dicting how many patches have to be destroyed or what
level of human-induced mortality has to be reached to
eradicate the pest. The theory we present is very general
and can be applied to all these scenarios.

In this article, we develop a model for a spatially dis-
tributed population. Our approach is based on the geo-
metric mean fitness (GMF), a concept widely used in pop-
ulation genetics and ecology to understand persistence in
fluctuating environments (Levins 1969a; Lewontin and
Cohen 1969; Gillespie 1974; Kuno 1981; Klinkhamer et al.
1983; Metz et al. 1983; Yoshimura and Jansen 1996; Jansen
and Yoshimura 1998). Our approach is also related to the
problem of optimal harvesting in stochastic environments
(e.g., Ricker 1958; Reed 1979; Clark 1985; Lande et al.
1994, 1995, 1997; Saether et al. 1996). We build on this
previous work by evaluating persistence from the point of
view of the number of patches. This also complements the
classical metapopulation framework that assumes an in-
finite number of patches.

We construct the model and formalize a criterion for
persistence based on the geometric mean of the spatial-
arithmetic mean of the growth rates. From this criterion,
we derive analytical approximations to answer these ques-
tions: What is the maximum human-induced mortality
rate a patchy population can sustain? How many patches
are needed to sustain a given harvesting rate? We conclude
by discussing the robustness of our approach when some
of our initial assumptions are relaxed.

A Patchy-Population Model

Our model is in spirit similar to early population genetic
models assuming a mating pool and dispersal into separate
demes (Levene 1953; Dempster 1955) and to models de-
veloped in relation to the evolution of dispersal (Kuno
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1981; Metz et al. 1983). We assume spatial structure and
geometric growth. Since we are looking for basic criteria
for persistence, rather than predicting long-term popu-
lation dynamics, we have kept our model simple by ig-
noring density dependence. Models by Chesson (1981)
and others (reviewed in Tuljapurkar 1989) account for
density dependence. Our model describes a spatially struc-
tured population that occupies a finite number of patches.
It also assumes nonoverlapping generations (but see “Dis-
cussion” section for a generalization).

Dispersal in this model operates according to the island
model with individuals entering a common migrant pool.
A fraction (h) is removed (or subject to human-induced
mortality; e.g., harvesting), while the rest will be distrib-
uted evenly into a set of patches (n) within which they
undergo reproduction. We consider human-induced mor-
tality to be a fixed fraction. The growth rate at each patch
is a random variable with some stationary probability-
density function. This introduces environmental stochas-
ticity to the model. After reproduction, offspring (e.g.,
larvae) disperse to the pool where they develop as adults.
For simplicity, we assume perfect mixing and an even dis-
tribution among the patches (below we discuss the ro-
bustness of our approach when these assumptions are
relaxed).

Let N, be the initial population size before the annual
harvesting and R, ; be the growth rate of patch i at year ;.
Given the above assumptions, the population size in the
next generation is given by

1 - —
N, =~(1—-hN, > R, = (1 — HN,R,, )
n i=1

where _RO is the arithmetic mean of growth rates among
the n patches in year 0. Similarly, the population size one
generation later will be

N, = (1 = HN,R, = (1 — h)’N,R,R.. @)

One can then generalize an expression for the popu-
lation size after t generations:

N, =N]la-ng, ©)

Let R; = (I — WR; be the spatial-arithmetic mean of
the growth rates times the fraction escaping harvesting.
If we denote the geometric mean (GM) of R’ by
G(R) = = R;)” ', then equation [3] can be written as

N, = N,G(R'). 4)
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Then, the population will persist in the long term
(N, 2 N,) if

!

G(R) 21 ®)

(Lewontin and Cohen 1969; Kuno 1981; Yoshimura and
Jansen 1996). The above criterion is equivalent to the cri-
terion for invasibility widely studied by Chesson (1990,
1994), Chesson and Ellner (1989), and Sasaki and Ellner
(1995) in the context of the coexistence of competing
species.

Kuno (1981) studied a similar model in the context of
the evolution of dispersal. He concluded that by “spreading
the risk” (i.e., by dispersing evenly to all patches), the
population maximizes the geometric mean of growth rates.
Jansen and Yoshimura (1998) analyzed a two-patch model
in the context of optimum offspring allocation into two
different habitats to maximize the GMF. Chesson (1981),
however, studied the effect of within-patch variability and
its role in maintaining spatial and temporal variability. Our
goal is to build on this basic body of theory. We derive
simple rules of thumb for the minimum number of patches
required for population persistence as a function of har-
vesting and environmental stochasticity.

The Variance-Discount Approximation to
Geometric Mean Fitness

We can approximate the GM in equation (5) by using
Taylor expansions (i.e., by the so-called variance-discount
approximation [VDA]; Gillespie 1974; Yoshimura and Jan-
sen 1996). This will allow us to relate G(R') to the number
of patches and to the level of environmental fluctuations.
The VDA has been used for the simplified case in which
there is only one patch and the population is not harvested
(n=1; h=0). In this case, equation (5) becomes
G(R) = G(R) > 1, and G(R) can be approximated as fol-
lows:

0,2

G(R) zR—E, ©)

where R and o are the arithmetic mean and variance,
respectively, of R (i.e., the mean and variance of growth
rates within patches). A complete derivation of this ap-
proximation can be found in Yoshimura and Jansen
(1996).

Now, we want to extend the VDA to our multiple-patch
situation depicted by equation (5). If R is a random var-
iable with mean R and variance ¢2, then R’ = S7_, a1—-
hR,/n is a new random variable with mean (1 — h)R
and variance (1 — h)*[o® + (n — 1)cov]/n, where cov =
cov(R;, R)) is the spatial covariance between any pair of

growth rates (we assume for simplicity that the covariance
function is homogeneous among all the possible pairs
R;, R). If we substitute this mean and variance into equa-
tion (6), then the temporal geometric mean of the spatial-
arithmetic mean of growth rates can be approximated by

o>+ (n— 1)cov

Ri~(1— h R —
GR)=~ (1 —h|R -~ (7)

Our goal is to provide rules for the critical number of
patches and maximum human-induced mortality consis-
tent with sustainability. Hence, we want to ensure that our
estimate is a conservative one. After studying the behavior
of several approximations, we found that a reasonably ac-
curate approximation to the GM is

o>+ (n— 1)cov

G(R)= (1 — h)|R ”

®)

This approximation of the GM converges with equa-
tion (7) when R = 1, when n is large, or for a combination
of these conditions. For other situations, equation (7) sets
a lower bound to equation (8), making it a conservative
estimate. As can be observed from equation (8), increasing
the covariance between patches (or increasing the variance
in environmental fluctuations) decreases the geometric
mean and so makes persistence more difficult. The fit of
equation (8) to the real geometric mean value is illustrated
in figures 1 and 2.

The key to our approximation lies in the concept of
sampling error and the difference between the geometric
mean and the arithmetic mean in variable environments.
The error in estimating the spatial-arithmetic mean of
growth rates diminishes with sample size (i.e., the number
of patches). In other words, the variability between the
R;’s decreases as n = . Let us assume that the expectation
of Ris E(R) = 2. We can imagine two different situations.
In the first one, # is infinite. In this case, there would be
no sampling error in estimating R and so no year-to-year
variability. A temporal series of R would be 2, 2, 2. Here
G(R) = (2 x 2 x 2)'® = 2, which coincides with the
temporal-arithmetic mean. Now, consider another situa-
tion involving a small value of #n. Due to sampling error,
the temporal series could be 3, 2, 1. In this case, the geo-
metric mean is G(R) = (3 x 2 x 1)'* = 1.817, which is
smaller than the arithmetic mean. Thus, the lower the
value of n, the higher the sampling error and the lower
the temporal geometric mean of spatial-arithmetic means
of growth rates.

In the following examples, we assume that each patch
can have either a low or a high growth rate with the same

This content downloaded from 130.102.158.24 on Thu, 18 Sep 2014 19:22:41 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

2.0

0.5

G(R)
o
II|!>IAII|lel]|||Ii}lt!llllrllll!lllll

0.0 LI I R A R N

0 1 2 3 4 5 6 7 8 9 10
Number of patches

2.0

vs)

L)

0.5

S S T T T W B S0 N0 OO0 W S BT B AT B B SO

0.0 LI 0 B A

0 1 2 3 4 5 [ 7 8 9 10
Number of patches

Figure 1: Value G(R/) is plotted as a function of the number of patches.
R=R1-h), h being the fraction of the metapopulation harvested.
Each point corresponds to one of 100 replicates of a simulation. Patches
can have a high (R = 3) or a low (R = 0.25) growth rate with the same
probability. At each generation, the effective arithmetic mean of growth
rates R is calculated, and the temporal geometric mean of such values
is calculated for a time window of 50 generations. The discontinuous
line plots the exact value, and the continuous line represents the ap-
proximation given by equation (8). G(R) = 1 delimits the condition for
the long-term persistence of the population. Spatial correlation is p =
0 (A) and p = 0.5 (B); h = 0.
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probability. We assume that there can be spatial correlation
in environmental fluctuations, but there is no temporal
correlation. We complement our analytical results with
numerical simulations. In the latter, the arithmetic mean
of R’ is estimated every year, and the geometric mean of
such values is calculated over a time span of 50 yr. One
hundred replicates are plotted. The exact analytical values
are calculated in the following way. For each number of
patches, all the possible combinations of high and low
growth rate values are considered. For each scenario (k),
the arithmetic mean of growth rates (R;) is calculated.
Each scenario occurs with a probability (P,) given by the
binomial distribution. The exact geometric mean is then
G(R") = TTwy RLPk. The dependence between G(R) and
the number of patches is shown in figures 1 and 2.

If there is no spatial correlation among patches, then
we assign a low or high value independently for each patch.
If cov > 0, we apply standard Markov chain theory to cal-
culate the relationship between spatial correlation and the
probability of high and low for the successive patches once
we assign the value for the first one. This set of proba-
bilities will be used to calculate both the exact analytical
value and the simulation. The procedure is the same as
used in the case of temporal correlation (see Roughgarden
1991), but now we look at the successive state transitions
through space instead of through time. If P,, and P,, are
the respective probabilities of low following high and of
high following low, the respective stationary probabilities
of high () and low (7,) are easily derived (Cox and Miller
1965):

b B,

=, W= .
' B+B’ 7 R+E

©)
The serial correlation between consecutive states (i.e., the
spatial correlation) is
p=1—(B+B). (10)

By rearranging equation (9) and introducing equation
(10), we have that

PZI = 771(1 - ,0), PIZ = 7!'2(1 - p)- (11)
In our case, high and low are equally likely (w, = 7, =
0.5),s0 B, = PB,,. If we define P,,,,. as the transition prob-
ability (i.e., the probability of changing from low to high
or from high to low when moving to the next patch), we
end up with the following expressions for assigning the
appropriate status to the next patch:

1+p
P = > P zl_Pchange: 2

change 2

12)
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Figure 2: Similar to figure 1, but now p = 0 and the fraction harvested
is h = 0.1 (A) and h = 0.3 (B) .

As seen here, if there is no spatial correlation, then
Phinge = Pume = 0.5 (i.e., each patch’s state is independent
of those of the other patches).

In our simulations, the first patch is assigned randomly
to high or low with the same probability. Then we use
equation (12) to assign the subsequent patches. In a similar
way, we use equation (12) to assign the probability of each
possible scenario when calculating the analytical value for

the geometric mean.

We plot in figure 1A and 1B the exact value of G(R'),
its approximation given by equation (8), and a set of nu-
merical simulations as a function of the number of patches.
As can be seen by comparing figure 1A and 1B, spatial
correlation decreases the value of G(R). In other words,
if environmental fluctuations are spatially correlated,
G(R") increases much slower with n. We would need more
patches to attain a specific G(R') value.

Figure 2A and 2B is equivalent to figure 1, but now we
compare the effect of increasing harvesting. As when in-
creasing spatial correlation, increasing harvesting reduces
the value of G(R') for a specific number of patches.

Finally, both figures 1 and 2 illustrate the dependence
of G(R") on n and show that the behavior of our approx-
imation (eq. [8]) provides a conservative estimate of the
exact geometric mean.

Critical Harvesting and Critical Number of Patches

Two interesting questions can be answered by using equa-
tion (8). First, what is the maximum human-induced mor-
tality rate (h,) compatible with the persistence of the pop-
ulation for a specific number of patches? Second, what is
the minimum number of patches (7,) needed for any given
human-induced mortality rate? These critical values can
be obtained from equation (8) after setting G(R) = 1 (the
population neither increases nor decreases). The critical
harvesting rate is

—1
— o*+ (n— Dcov
2n

13)
defined for n> o® + cov/(2R + cov).

Inspection of equation (13) suggests that it can have
negative solutions. This happens when the number of
patches is insufficient to maintain the population even in
the absence of harvesting. A negative harvesting rate could
be interpreted as the fraction of individuals that should
be introduced every year into the pool to assure long-term
persistence of the population. If we are dealing with a crop
pest, we would have to kill a higher fraction than equation
(13) to have a good chance of eradication. Similarly, . is
the minimum fraction of individuals we should vaccinate
to eradicate an infectious disease.

In a similar way, the critical number of patches (n,)
necessary to sustain a population harvested at a rate h is
provided by

(1= h®—cov)
(1 —hQR—cov) —2

(14)

c

defined for h < 2(1_2 - 1)/(21_2 — cov).
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The critical number of patches for persistence (n,) is
plotted in figure 3 as a function of the harvesting rate.
The different curves correspond to a fixed arithmetic mean
of growth rates but different variances. The curves are
highly nonlinear, with a slow increase in n, for low to
moderate h values, followed by a fast increase for higher
h values. Also, the critical number of patches increases
with the variance in growth rates. The shape of the curves
in figure 3 would be important in determining the eco-
nomic benefit of harvesting the population if this benefit
is defined as a trade-off between the gross benefit of ex-
ploitation and the cost of maintaining the patches (protect
them as reserves).

Robustness of the Model: Relaxing Some Assumptions

Two of the key assumptions in our model are that indi-
viduals are uniformly distributed among patches and that
all individuals migrate into a common pool. This, in prin-
ciple, could restrict the potential number of examples at
which our approach could be applied, so it is worthwhile
relaxing these assumptions. First, we will assume an un-
even distribution among patches. Then, we will assume
that a fraction of the recruits is retained locally.

Kuno (1981) considered the case of an uneven distri-
bution in his study of the evolution of dispersal. Here, we
will work through his reasoning. For purposes of clarity,
let us assume that both h and cov are 0. In this case,

30

Critical number of patches

S S
T T S N S TN S OO0 SO0 T S T T TR A A T TN O S B S S Y
&

[ o o e o

0.0 0.1 0.2 0.3 0.4
Fraction harvested (h)

Figure 3: Critical number of patches to sustain a patchy population as
a function of harvesting according to equation (14). R = 1.75; ¢* = 1,
2, 3, 4, and 5.
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R; = (1 — R, = R,. Then, if o, is the fraction of indi-
viduals in the pool that migrate to patch i, R =
>uoro;R; is a random variable with mean R (it
coincides with the mean for an even distribution) and
variance 6> X% a; (instead of ¢°/n for the case of an even
distribution). Our approximation to the geometric mean
would be

G(R) ~ R — —=1—, (15)

Since 1/n < 3n-10f <1, it is clear that the previous
equation is <R — 0*/2n (see eq. [8]). So, by departing from
the even distribution, the geometric mean of arithmetic
means of growth rates is reduced. Other things being equal,
we would need a larger number of patches to sustain the
population. In other words, an uneven distribution di-
minishes the risk-spreading benefits of uniform dispersal.

Let us imagine that a fraction («;) of the individuals
present in the pool recruit to patch 1, while the rest recruit
evenly among the remaining n — 1 patches (a, > o =
o, = ... = a,). We can have, for example, one large
patch and a set of small ones. Another possibility would
be to have one patch located closer to the larval pool and
the remaining patches being at a larger distance. Under
such a scenario, one can compare the implications of many
small versus a few large patches of habitat. Let us suppose
that there are 10 patches, and let’s allow «, to range from
0.1 (all patches are equal as assumed by our model) to 1
(there is only one effective patch). The value G(R) is plot-
ted versus «, in figure 4. Interestingly, the decline in
G(R) is small for values of o, close to an even situation,
the curve becoming steeper for larger «; values. For ex-
ample, moving from a situation with 10 patches of the
same size (o, = d = 0.1), to a situation with one big
patch comprising 30% of the total area and nine small
patches, each one comprising 7.8% of the total area, rep-
resents only a decrease in G(R) of 2.42%. Consequently,
for small to moderate deviations from the even assump-
tion, our approach could still be applied (remember that
we deliberately made a conservative estimate). The other
conclusion from figure 4 is that, other things being equal,
having a large number of small patches (as opposed to a
few number of big patches) increases the geometric mean
fitness and so the chances of population persistence.

Our second assumption is that all the individuals from
a patch migrate into the common pool. Metz et al. (1983)
and Klinkhamer et al. (1983) have both studied the case
in which only a fraction of the local populations disperses.
For comparison purposes, we have developed a spatially
explicit simulation of our model to explore the effect of
the fraction migrating to a common pool (#1) on popu-
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Figure 4: Robustness of our results when we depart from our assump-
tion of an even recruitment among patches. Value G(R) is plotted as a
function of e, (i.e., the fraction of individuals recruiting back to patch
1). The rest of the individuals recruit evenly among the remaining n —
1 patches. Based on equation (15). n = 10; R = 1.75; ¢> = 2.

lation growth. Note that our model is a good approach to
predict criteria for persistence but not to predict popu-
lation density since it assumes unlimited exponential
growth. To plot population density, we have used a density-
dependent version of our model. Figure 5 shows the pop-
ulation size after a given number of generations as a func-
tion of m. The interesting point here is the shape of figure
5. Population size is almost the same for values of m
between 0.8 and 1, and it declines faster as m becomes
smaller. For this particular example, moving from m =
1 to m = 0.8 implies a reduction in population size of
only 1.1%. Even at m = 0.6, the reduction is only of about
11%. This means that our approach would work quite well
for moderate departures from the assumption of total
migration.

Discussion

The model we have developed can be used to make pre-
dictions about the two case studies mentioned in the in-
troduction, namely, the red sea urchin Strongylocentrotus
franciscanus and some coral reef fishes. Both have a well-
defined patchy distribution and larval dispersal, and both
are harvested (Quinn et al. 1993; Mann et al. 1995). In
several well-documented reef fish species (i.e., redtail par-
rotfish Sparisoma ribripinne, striped parrotfish Sparisoma

iserti, ocean surgeonfish Acanthurus bahianus, and blue
tang Acanthurus coeruleus) reviewed by Colin (1996),
spawning areas persisted through time. In the case where
spawning sites ceased to exist, overfishing by humans
seems to be the most likely cause (Colin 1996).

One could estimate population growth rates at different
years and at various of such spawning sites. By only cal-
culating the mean, variance, and spatial covariances of this
spatiotemporal data, one could predict the minimum
number of patches required for persistence given the cur-
rent levels of environmental stochasticity. Conversely, one
could predict the maximum rate of harvesting for a par-
ticular combination of environmental fluctuations and
number of patches. One prediction arising from the results
shown here is that, other things being equal, one could
harvest a larger fraction of individuals (or maintain the
population with a smaller number of patches) in places
with lower environmental variability. Also, persistence
would be more likely if the redistribution of individuals
into patches was more equidistant or if we had a larger
number of small patches as opposed to a lower number
of large patches.

In this article, we have derived simple rules for pre-
dicting persistence of a patchy population subject to
human-induced mortality. These rules address frequently
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Figure 5: Robustness of our result when we depart from our assumption
of total migration into the pool. The figure plots population abundance
after 1,000 iterations, according to a numerical simulation of a density-
dependent, spatially explicit version of our model, as a function of the
fraction of individuals migrating to the common pool (). Each point
is the average of 1,000 replicates. The carrying capacity was assumed to
be 10° at each patch. Abundance is quite constant (and so assuming
global mixing is acceptable) for moderate departures from m = 1.
n = 9; cov= 0; h = 0; other parameters as in figure 1.
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asked questions: What is the maximum harvesting rate a
population can sustain? How many patches are necessary
for the persistence of an exploited population? The model
is very general and some assumptions can be relaxed to
accommodate different case studies. Our conservative ap-
proximation is justified since the two most important de-
viations from our assumptions (namely, an uneven re-
cruitment to patches and partial migration) decrease the
geometric mean and thus increase the number of patches
required for population persistence. However, as shown
before, the decrease in the GM when departing moderately
from our assumptions can be as small as 3%. This means
that our model, despite its simplicity, is very robust when
some of the key assumptions are relaxed and additional
detail is introduced.

Our strategy has been to use a simple model to com-
pletely understand the relationships between environmen-
tal stochasticity, harvesting, and minimum number of
patches for population persistence. In this way, we have
been able to develop simple analytical expressions. As
noted by Lande et al. (1997, p. 1342), “analytical models,
although necessarily simplified in some respects, have the
advantage of deriving general, robust conclusions.” How-
ever, this does not preclude additional levels of complexity
if they are considered to be important in particular ex-
amples. For example, we have neglected larvae mortality
during the dispersal phase. In some situations, a large
fraction of larvae can fail to colonize any patch. This can
be easily introduced into the model. Mortality can be either
a constant or, more realistically, a function of the number
of patches since one could imagine that the probability of
successfully finding a patch decays as the number of
patches decreases. If 3, is the mortality associated to a
number # of patches , then the right-hand side of equation
(1) should be multiplied by a term (1 — 3,). We then can
define R; = (1 —,)( — bR, and use the same analytical
expressions developed in this article.

In contrast to most harvesting and reserve design theory

that focuses on density-dependence and deterministic=*

models (Gerber et al., in press), our focus is on density-
independent stochastic population dynamics where long-

term population growth is mediated by dispersal of ju =+

veniles between patches in a patchy population. By
deriving a relationship between persistence and the num-
ber of patches, our approximation also departs from tra-
ditional metapopulation models that assume an infinite
number of patches.

We have assumed nonoverlapping generations. How- =+

ever, the framework described in this article can be easily
extended to a situation with overlapping generations. If
there is a stable age-structure, it can be proved that the
fundamental net reproductive rate (R), the basic repro-
ductive rate (R,; a parameter easily estimated from a co-
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hort life table), and the generation time (T) are related
by the following relationship (which is valid for semel-
parous populations): = In R = In R,/T, where ris called
the intrinsic rate of natural increase (see Begon et al. 1990).
If generations are discrete, T =1 and R = R,. If R, =
1, and/or there is little variation in generation time, a good
approximation to ris r = In R,/T., where T. is the cohort
generation time. The value of T. can again be obtained
from a cohort life table (May 1976).

The theory presented here is particularly relevant to
species with weak density dependence, spatial structure,
and high dispersal and to species that are also subject to
high abiotic environmental variability. While we have
stressed the applicability of the model for harvesting a
stock, the ideas also apply to the control of patchily dis-
tributed pests and diseases that experience environmental
variability.
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