261 research outputs found

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)

    Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning

    Get PDF
    The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks

    Whole brain radiotherapy with radiosensitizer for brain metastases

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To study the efficacy of whole brain radiotherapy (WBRT) with radiosensitizer in comparison with WBRT alone for patients with brain metastases in terms of overall survival, disease progression, response to treatment and adverse effects of treatment.</p> <p>Methods</p> <p>A meta-analysis of randomized controlled trials (RCT) was performed in order to compare WBRT with radiosensitizer for brain metastases and WBRT alone. The MEDLINE, EMBASE, LILACS, and Cochrane Library databases, in addition to Trial registers, bibliographic databases, and recent issues of relevant journals were researched. Significant reports were reviewed by two reviewers independently.</p> <p>Results</p> <p>A total of 8 RCTs, yielding 2317 patients were analyzed. Pooled results from this 8 RCTs of WBRT with radiosensitizer have not shown a meaningful improvement on overall survival compared to WBRT alone OR = 1.03 (95% CI0.84–1.25, p = 0.77). Also, there was no difference in local brain tumor response OR = 0.8(95% CI 0.5 – 1.03) and brain tumor progression (OR = 1.11, 95% CI 0.9 – 1.3) when the two arms were compared.</p> <p>Conclusion</p> <p>Our data show that WBRT with the following radiosentizers (ionidamine, metronidazole, misonodazole, motexafin gadolinium, BUdr, efaproxiral, thalidomide), have not improved significatively the overall survival, local control and tumor response compared to WBRT alone for brain metastases. However, 2 of them, motexafin- gadolinium and efaproxiral have been shown in recent publications (lung and breast) to have positive action in lung and breast carcinoma brain metastases in association with WBRT.</p

    Can We Really Prevent Suicide?

    Get PDF
    Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia

    Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.</p> <p>Methods</p> <p>We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis.</p> <p>Results</p> <p>Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits.</p> <p>Conclusions</p> <p>Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.</p

    Quantitative electroencephalography reveals different physiological profiles between benign and remitting-relapsing multiple sclerosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A possible method of finding physiological markers of multiple sclerosis (MS) is the application of EEG quantification (QEEG) of brain activity when the subject is stressed by the demands of a cognitive task. In particular, modulations of the spectral content that take place in the EEG of patients with multiple sclerosis remitting-relapsing (RRMS) and benign multiple sclerosis (BMS) during a visuo-spatial task need to be observed.</p> <p>Methods</p> <p>The sample consisted of 19 patients with RRMS, 10 with BMS, and 21 control subjects. All patients were free of medication and had not relapsed within the last month. The power spectral density (PSD) of different EEG bands was calculated by Fast-Fourier-Transformation (FFT), those analysed being delta, theta, alpha, beta and gamma. Z-transformation was performed to observe individual profiles in each experimental group for spectral modulations. Lastly, correlation analyses was performed between QEEG values and other variables from participants in the study (age, EDSS, years of evolution and cognitive performance).</p> <p>Results</p> <p>Nearly half (42%) the RRMS patients showed a statistically significant increase of two or more standard deviations (SD) compared to the control mean value for the beta-2 and gamma bands (F = 2.074, p = 0.004). These alterations were localized to the anterior regions of the right hemisphere, and bilaterally to the posterior areas of the scalp. None of the BMS patients or control subjects had values outside the range of ± 2 SD. There were no significant correlations between these values and the other variables analysed (age, EDSS, years of evolution or behavioural performance).</p> <p>Conclusion</p> <p>During the attentional processing, changes in the high EEG spectrum (beta-2 and gamma) in MS patients exhibit physiological alterations that are not normally detected by spontaneous EEG analysis. The different spectral pattern between pathological and controls groups could represent specific changes for the RRMS patients, indicative of compensatory mechanisms or cortical excitatory states representative of some phases during the RRMS course that are not present in the BMS group.</p

    How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food

    Get PDF
    The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations

    Cognitive Performance and Heart Rate Variability: The Influence of Fitness Level

    Get PDF
    In the present study, we investigated the relation between cognitive performance and heart rate variability as a function of fitness level. We measured the effect of three cognitive tasks (the psychomotor vigilance task, a temporal orienting task, and a duration discrimination task) on the heart rate variability of two groups of participants: a high-fit group and a low-fit group. Two major novel findings emerged from this study. First, the lowest values of heart rate variability were found during performance of the duration discrimination task, compared to the other two tasks. Second, the results showed a decrement in heart rate variability as a function of the time on task, although only in the low-fit group. Moreover, the high-fit group showed overall faster reaction times than the low-fit group in the psychomotor vigilance task, while there were not significant differences in performance between the two groups of participants in the other two cognitive tasks. In sum, our results highlighted the influence of cognitive processing on heart rate variability. Importantly, both behavioral and physiological results suggested that the main benefit obtained as a result of fitness level appeared to be associated with processes involving sustained attention.This research was supported by the Spanish Ministerio de Educación y Cultura with a predoctoral grant (FPU-AP2010-3630) to the first author, Spanish grants SEJ2007-63645 from the Junta de Andalucía to Daniel Sanabria, Mikel Zabala and Esther Morales, and the CSD2008-00048 CONSOLIDER INGENIO (Dirección General de Investigación) to Daniel Sanabria

    Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    Get PDF
    Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity.Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability.The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise
    corecore