48 research outputs found

    Epithelial Protein Lost in Neoplasm α (Eplin-α) is transcriptionally regulated by G-actin and MAL/MRTF coactivators

    Get PDF
    Epithelial Protein Lost in Neoplasm α is a novel cytoskeleton-associated tumor suppressor whose expression inversely correlates with cell growth, motility, invasion and cancer mortality. Here we show that Eplin-α transcription is regulated by actin-MAL-SRF signalling. Upon signal induction, the coactivator MAL/MRTF is released from a repressive complex with monomeric actin, binds the transcription factor SRF and activates target gene expression. In a transcriptome analysis with a combination of actin binding drugs which specifically and differentially interfere with the actin-MAL complex (Descot et al., 2009), we identified Eplin to be primarily controlled by monomeric actin. Further analysis revealed that induction of the Eplin-α mRNA and its promoter was sensitive to drugs and mutant actins which stabilise the repressive actin-MAL complex. In contrast, the Eplin-β isoform remained unaffected. Knockdown of MRTFs or dominant negative MAL which inhibits SRF-mediated transcription impaired Eplin-α expression. Conversely, constitutively active mutant actins and MAL induced Eplin-α. MAL and SRF were bound to a consensus SRF binding site of the Eplin-α promoter; the recruitment of MAL to this region was enhanced severalfold upon induction. The tumor suppressor Eplin-α is thus a novel cytoskeletal target gene transcriptionally regulated by the actin-MAL-SRF pathway, which supports a role in cancer biology

    A dual phenotype of MDA MB 468 cancer cells reveals mutual regulation of tensin3 and adhesion plasticity

    Get PDF
    A change regarding the extent of adhesion - hereafter referred to as adhesion plasticity - between adhesive and less-adhesive states of mammalian cells is important for their behavior. To investigate adhesion plasticity, we have selected a stable isogenic subpopulation of human MDA-MB-468 breast carcinoma cells growing in suspension. These suspension cells are unable to re-adhere to various matrices or to contract three-dimensional collagen lattices. By using transcriptome analysis, we identified the focal adhesion protein tensin3 (Tns3) as a determinant of adhesion plasticity. Tns3 is strongly reduced at mRNA and protein levels in suspension cells. Furthermore, by transiently challenging breast cancer cells to grow under non-adherent conditions markedly reduces Tns3 protein expression, which is regained upon re-adhesion. Stable knockdown of Tns3 in parental MDA-MB-468 cells results in defective adhesion, spreading and migration. Tns3-knockdown cells display impaired structure and dynamics of focal adhesion complexes as determined by immunostaining. Restoration of Tns3 protein expression in suspension cells partially rescues adhesion and focal contact composition. Our work identifies Tns3 as a crucial focal adhesion component regulated by, and functionally contributing to, the switch between adhesive and non-adhesive states in MDA-MB-468 cancer cells

    Lamina-associated polypeptide 2 alpha is required for intranuclear MRTF-A activity

    Get PDF
    Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2 alpha (Lap2 alpha), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2 alpha is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2 alpha neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2 alpha is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2 alpha. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2 alpha in transcriptional regulation.Peer reviewe

    Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip

    Get PDF
    Serum response factor (SRF) acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs) or myocardin-related transcription factors (MRTFs). Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE). Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis

    Tightly controlled MRTF-A activity regulates epithelial differentiation during formation of mammary acini

    No full text
    Abstract Background Myocardin-related transcription factors (MRTF) A and B link actin dynamics and mechanotransduction to gene expression. In mice, MRTF-A is involved in mammary gland differentiation, but its role in human mammary epithelial cells remains unclear. Methods Three-dimensional cultures of human mammary epithelial MCF10A cells were used to model acinar morphogenesis. Stable MRTF-A knockdown, MRTF-A/B rescue and MRTF-A/B overexpression was established to characterize the functional role during morphogenesis using confocal microscopy and expression analysis. Breast cancer patient databases were analyzed for MRTF-A expression. Results We showed that a precise temporal control of MRTFs is required for normal morphogenesis of MCF10A mammary acini. MRTF transcriptional activity, but not their protein amounts, is transiently induced during 3D acini formation. MRTF-A knockdown dramatically reduces acini size and prevents lumen formation. These effects are rescued by re-expression of MRTF-A, and partially by MRTF-B. Conversely, overexpression of MRTF-A and MRTF-B increases acini size, resulting in irregular spheroids without lumen and defective apico-basal polarity. These phenotypes correlate with deregulated expression of cell cycle inhibitors p21/Waf1, p27/Kip1 and altered phosphorylation of retinoblastoma protein. In MRTF overexpressing spheroids, proliferation and apoptosis are simultaneously increased at late stages, whilst neither occurs in control acini. MRTFs interfere with anoikis of the inner cells and cause an integrin switch from α6 to α5, repression of E-cadherin and induction of mesenchymal markers vimentin, Snai2 and Zeb1. Moreover, MRTF-overexpressing spheroids are insensitive to alteration in matrix stiffness. In two breast cancer cohorts, high expression of MRTF-A and known target genes was associated with decreased patient survival. Conclusion MRTF-A is required for proliferation and formation of mammary acini from luminal epithelial cells. Conversely, elevated MRTF activity results in pre-malignant spheroid formation due to defective proliferation, polarity loss and epithelial-mesenchymal transition

    El Diario de Pontevedra : periódico liberal: Ano XXII Número 3671 - 1905 xuño 17

    No full text
    Characterization of MCF10A cells overexpressing MRTFs. a MRTF-A and MRTF-B protein expression in stably transduced pools of cells overexpressing MRTF-A or MRTF-B or vector-infected (mock) and parental control cells. A representative immunoblot with specific antibodies against MRTF-A, MRTF-B and GAPDH as a control is shown. Quantified relative protein amounts of MRTF-A were normalized to parental MCF10A cells. b Stably transduced cells were transiently transfected under serum-starved conditions, treated after 24 h with horse serum for 7 h if indicated and analyzed for MRTF/SRF reporter activity. Error bars SEM (n = 3): *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t test). (TIFF 14057 kb

    Phosphoinositide 3-kinase C2β regulates RhoA and the actin cytoskeleton through an interaction with Dbl

    Get PDF
    The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA

    Additional file 1: Figure S1. of Tightly controlled MRTF-A activity regulates epithelial differentiation during formation of mammary acini

    No full text
    MRTF-A expression and activity. a MRTF-A and MRTF-B expression during acinar morphogenesis of MCF10A cells for 15 days. Protein extracts were prepared from recovered acini and blotted with antibodies as indicated. As control, GAPDH protein is shown. b MRTF-A and MRTF-B protein expression was examined in MCF10A and NIH3T3 cells. All western blots are representative of two independent experiments. (TIFF 8243 kb
    corecore