683 research outputs found

    Characterization of PARIS LaBr3_3(Ce)-NaI(Tl) phoswich detectors upto EγE_\gamma ∼\sim 22 MeV

    Full text link
    In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr3_3(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of EγE_{\gamma} = 0.6 to 22.6 MeV using radioactive sources and employing 11B(p,γ)^{11}B(p,\gamma) reaction at EpE_p = 163 keV and EpE_p = 7.2 MeV. The linearity of energy response of the LaBr3_3(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of ∼\sim 2.1% at EγE_\gamma = 22.6~MeV is measured for the configuration giving best linearity upto high energy. Time resolution of the phoswich detector is measured with a 60^{60}Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM ∼\sim 315~ps). In order to study the effect of count rate on detectors, the centroid position and width of the EγE_{\gamma} = 835~keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.Comment: Accepted in JINS

    A cross-layer approach for QoS topology control in wireless ad hoc networks

    Get PDF
    Wireless ad hoc networks using omni-directional antennas do not scale well due to interference between nearby nodes. Maintaining the QoS of the communications in this type of network is a difficult task. Using multiple narrow beam directional antennas alleviates this problem at the expense of connectivity. Multi-beam smart antennas allow the network topology to be adjusted dynamically by adjusting the beamwidth and beam directions to minimize interference and to maximize the number of possible concurrent network communications. This in turn helps to maintain the QoS of the communications. QoS routing has long been used to meet the user requirements by finding appropriate paths to the destinations. We extend this concept to create an adaptive QoS topology control (AQTC) system using smart antennas. We use a cross-layer approach to control the topology dynamically where the topology control layer sits between the MAC and the routing protocol. The performance of our protocol has been evaluated using extensive simulations. Simulation results show that different topologies for a set of communications perform differently. AQTC always forms a topology to facilitate the current communications and improves the network throughput and end-to-end delay

    A customizable 3D printed device for enzymatic removal of drugs in water

    Get PDF
    The infiltration of drugs into water is a key global issue, with pharmaceuticals being detected in all nearly aqueous systems at often alarming concentrations. Pharmaceutical contamination of environmental water supplies has been shown to negatively impact ecological equilibrium and pose a risk to human health. In this study, we design and develop a novel system for the removal of drugs from water, termed as Printzyme. The device, fabricated with stereolithography (SLA) 3D printing, immobilises laccase sourced from Trametes Versicolor within a poly(ethylene glycol) diacrylate hydrogel. We show that SLA printing is a sustainable method for enzyme entrapment under mild conditions, and measure the stability of the system when exposed to extremes of pH and temperature in comparison to free laccase. When tested for its drug removal capacity, the 3D printed device substantially degraded two dissolved drugs on the European water pollution watch list. When configured in the shape of a torus, the device effectively removed 95% of diclofenac and ethinylestradiol from aqueous solution within 24 and 2 h, respectively, more efficiently than free enzyme. Being customizable and reusable, these 3D printed devices could help to efficiently tackle the world's water pollution crisis, in a flexible, easily scalable, and cost-efficient manner

    Polygalacturonase gene FaPG1 downregulation is related to increased strawberry fruit resistance to fungal decay

    Get PDF
    Plant health is a major target in breading programs because crops are under constant biotic stress, and climate change is exacerbating pests and disease negative impacts in agriculture. Obtaining crop varieties armed with better defences is a potential strategy to reduce losses from biotic attacks. Plant cell walls perform crucial roles on many physiological processes, and under biotic stress, play crucial defensive roles as protecting barrier, as well as a source of integrity signalling molecules. Plant immunity has evolved a complex multi-layered system which first line of defence is initiated by conserved molecular patterns coming from pathogens, named pathogen-associated molecular patterns or PAMPs, or from their own corrupted cell walls due to pathogen invasion, named damaged-associated molecular patterns or DAMPs. Accumulating evidence from cell wall mutants has unveiled several components and mechanisms of plant innate immunity under biotic stresses, mostly in Arabidopsis, but still little is known from species with agronomic interest as strawberry. Our group has an established strawberry transgenic collection of cell wall mutants. Among them, RNAseq expression profiles of FaPG1 mutants has shown downregulation of other cell wall related genes than PG [1], but the mechanisms underneath required further investigation. FaPG genes code for enzymes with endo-PG activity related to oligogalacturonic acid (OGA) release, which would be associated to the changes in gene expression of other cell wall genes than FaPG. In this work, postharvest assays of FaPG1 fruits showed not only the increased fruit firmness typical of this mutant, but a better resistance to fungal infections by Botrytis cinerea, enhancing fruit shelf life in comparison with control fruits.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    eu regional policy effectiveness and the role of territorial capital

    Get PDF
    The present chapter reviews the recent studies of the group of regional and urban economics on the impact of the European Union regional policy on regional development. In particular, the focus of the research program is on the identification of the mechanisms through which the local territorial characteristics mediate the effect of public investments. Results show a strong relationship between the territorial capital of regions and the effectiveness of the EU regional policy. This evidence conveys relevant implications for policy makers. In particular, it suggests that regions should invest in those assets that are complementary to the ones which they already have, in order to build a balanced economic system

    ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content

    Get PDF
    There is considerable interest in engineering plant cell wall components, particularly lignin, to improve forage quality and biomass properties for processing to fuels and bioproducts. However, modifying lignin content and/or composition in transgenic plants through down-regulation of lignin biosynthetic enzymes can induce expression of defense response genes in the absence of biotic or abiotic stress. Arabidopsis thaliana lines with altered lignin through down-regulation of hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) or loss of function of cinnamoyl CoA reductase 1 (CCR1) express a suite of pathogenesis-related (PR) protein genes. The plants also exhibit extensive cell wall remodeling associated with induction of multiple cell wall-degrading enzymes, a process which renders the corresponding biomass a substrate for growth of the cellulolytic thermophile Caldicellulosiruptor bescii lacking a functional pectinase gene cluster. The cell wall remodeling also results in the release of size- and charge-heterogeneous pectic oligosaccharide elicitors of PR gene expression. Genetic analysis shows that both in planta PR gene expression and release of elicitors are the result of ectopic expression in xylem of the gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1), which is normally expressed during anther and silique dehiscence. These data highlight the importance of pectin in cell wall integrity and the value of lignin modification as a tool to interrogate the informational content of plant cell walls
    • …
    corecore