428 research outputs found
Representations of Coherent and Squeezed States in a -deformed Fock Space
We establish some of the properties of the states interpolating between
number and coherent states denoted by ; among them are the
reproducing of these states by the action of an operator-valued function on (the standard Fock space) and the fact that they can be regarded as
-deformed coherent bound states. In this paper we use them, as the basis of
our new Fock space which in this case are not orthogonal but normalized. Then
by some special superposition of them we obtain new representations for
coherent and squeezed states in the new basis. Finally the statistical
properties of these states are studied in detail.Comment: 13 pages, 4 Figure
Dirty black holes: Quasinormal modes for "squeezed" horizons
We consider the quasinormal modes for a class of black hole spacetimes that,
informally speaking, contain a closely ``squeezed'' pair of horizons. (This
scenario, where the relevant observer is presumed to be ``trapped'' between the
horizons, is operationally distinct from near-extremal black holes with an
external observer.) It is shown, by analytical means, that the spacing of the
quasinormal frequencies equals the surface gravity at the squeezed horizons.
Moreover, we can calculate the real part of these frequencies provided that the
horizons are sufficiently close together (but not necessarily degenerate or
even ``nearly degenerate''). The novelty of our analysis (which extends a
model-specific treatment by Cardoso and Lemos) is that we consider ``dirty''
black holes; that is, the observable portion of the (static and spherically
symmetric) spacetime is allowed to contain an arbitrary distribution of matter.Comment: 15 pages, uses iopart.cls and setstack.sty V2: Two references added.
Also, the appendix now relates our computation of the Regge-Wheeler potential
for gravity in a generic "dirty" black hole to the results of Karlovini
[gr-qc/0111066
New Discrete Basis for Nuclear Structure Studies
A complete discrete set of spherical single-particle wave functions for
studies of weakly-bound many-body systems is proposed. The new basis is
obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the
new wave functions decay exponentially at large distances. Using the new basis,
characteristics of weakly-bound orbitals are analyzed and the ground state
properties of some spherical doubly-magic nuclei are studied. The basis of the
transformed harmonic oscillator is a significant improvement over the harmonic
oscillator basis, especially in studies of exotic nuclei where the coupling to
the particle continuum is important.Comment: 13 pages, RevTex, 6 p.s. figures, submitted to Phys. Rev.
The cusp anomalous dimension at three loops and beyond
We derive an analytic formula at three loops for the cusp anomalous dimension
Gamma_cusp(phi) in N=4 super Yang-Mills. This is done by exploiting the
relation of the latter to the Regge limit of massive amplitudes. We comment on
the corresponding three loops quark anti-quark potential. Our result also
determines a considerable part of the three-loop cusp anomalous dimension in
QCD. Finally, we consider a limit in which only ladder diagrams contribute to
physical observables. In that limit, a precise agreement with strong coupling
is observed.Comment: 34 pages, 6 figures. v2: references added, typos correcte
Quasi-normal frequencies: Key analytic results
The study of exact quasi-normal modes [QNMs], and their associated
quasi-normal frequencies [QNFs], has had a long and convoluted history -
replete with many rediscoveries of previously known results. In this article we
shall collect and survey a number of known analytic results, and develop
several new analytic results - specifically we shall provide several new QNF
results and estimates, in a form amenable for comparison with the extant
literature. Apart from their intrinsic interest, these exact and approximate
results serve as a backdrop and a consistency check on ongoing efforts to find
general model-independent estimates for QNFs, and general model-independent
bounds on transmission probabilities. Our calculations also provide yet another
physics application of the Lambert W function. These ideas have relevance to
fields as diverse as black hole physics, (where they are related to the damped
oscillations of astrophysical black holes, to greybody factors for the Hawking
radiation, and to more speculative state-counting models for the Bekenstein
entropy), to quantum field theory (where they are related to Casimir energies
in unbounded systems), through to condensed matter physics, (where one may
literally be interested in an electron tunelling through a physical barrier).Comment: V1: 29 pages; V2: Reformatted, 31 pages. Title changed to reflect
major additions and revisions. Now describes exact QNFs for the double-delta
potential in terms of the Lambert W function. V3: Minor edits for clarity.
Four references added. No physics changes. Still 31 page
Regional-Scale Simulations of Fungal Spore Aerosols Using an Emission Parameterization Adapted to Local Measurements of Fluorescent Biological Aerosol Particles
Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling- Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 ÎŒm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 Lïżœ1. The results confirm that fungal spores and biological particles may account for a major fraction of supermicron aerosol particle number and mass concentration over vegetated continental regions and should thus be explicitly considered in air quality and climate studies
Isoprene and monoterpene fluxes from central amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget
We estimated the isoprene and monoterpene source strengths of a pristine tropical forest north of Manaus in the central Amazon Basin using three different micrometeorological flux measurement approaches. During the early dry season campaign of the Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001), a tower-based surface layer gradient (SLG) technique was applied simultaneously with a relaxed eddy accumulation (REA) system. Airborne measurements of vertical profiles within and above the convective boundary layer (CBL) were used to estimate fluxes on a landscape scale by application of the mixed layer gradient (MLG) technique. The mean daytime fluxes of organic carbon measured by REA were 2.1 mg C m^â2 h^â1 for isoprene, 0.20 mg C m^â2 h^â1 for α-pinene, and 0.39 mg C m^â2 h^â1 for the sum of monoterpenes. These values are in reasonable agreement with fluxes determined with the SLG approach, which exhibited a higher scatter, as expected for the complex terrain investigated. The observed VOC fluxes are in good agreement with simulations using a single-column chemistry and climate model (SCM).\ud
\ud
In contrast, the model-derived mixing ratios of VOCs were by far higher than observed, indicating that chemical processes may not be adequately represented in the model. The observed vertical gradients of isoprene and its primary degradation products methyl vinyl ketone (MVK) and methacrolein (MACR) suggest that the oxidation capacity in the tropical CBL is much higher than previously assumed. A simple chemical kinetics model was used to infer OH radical concentrations from the vertical gradients of (MVK+MACR)/isoprene. The estimated range of OH concentrations during the daytime was 3â8Ă10^6 molecules cm^â3, i.e., an order of magnitude higher than is estimated for the tropical CBL by current state-of-the-art atmospheric chemistry and transport models. The remarkably high OH concentrations were also supported by results of a simple budget analysis, based on the flux-to-lifetime relationship of isoprene within the CBL. Furthermore, VOC fluxes determined with the airborne MLG approach were only in reasonable agreement with those of the tower-based REA and SLG approaches after correction for chemical decay by OH radicals, applying a best estimate OH concentration of 5.5Ă10^6 molecules cm^â3. The SCM model calculations support relatively high OH concentration estimates after specifically being constrained by the mixing ratios of chemical constituents observed during the campaign.\ud
\ud
The relevance of the VOC fluxes for the local carbon budget of the tropical rainforest site during the measurements campaign was assessed by comparison with the concurrent CO2 fluxes, estimated by three different methods (eddy correlation, Lagrangian dispersion, and mass budget approach). Depending on the CO2 flux estimate, 1â6% or more of the carbon gained by net ecosystem productivity appeared to be re-emitted through VOC emissions
QGP Theory: Status and Perspectives
The current status of Quark-Gluon-Plasma Theory is reviewed. Special emphasis
is placed on QGP signatures, the interpretation of current data and what to
expect from RHIC in the near future.Comment: 20 pages, invited overview talk at the 4th International Conference
on the Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001,
Jaipur, India, to appear in Praman
- âŠ