35 research outputs found

    Personal Utility Cart

    Get PDF
    This final design report will detail the entire engineering design process from conceptualization through manufacturing and testing. After introducing the topic and scope of the project this document presents all of the benchmarking and research performed in order to obtain as much information about similar current products and possible solutions. Next the objectives of the project are presented where the needs are transformed into engineering specifications that will guide the design of the product. Design developed is then presented with ideation, idea evaluation and selection, analysis, manufacturing considerations, and final design selection. The final design is then presented with each of its three subsystems, including supporting analysis, manufacturing and testing plans, bill of materials and cost as well as material selection, safety considerations, and maintenance plans. Following that is the management plan where team roles are outlines and project deadlines are presented. Product realization is next, which includes the manufacturing process that was taken for all components as well as description of changes between the planned and built design and recommendations for future manufacturing changes. Design verification follows with testing procedures and results and a final budget for the manufactured design. Next are conclusions that summarize what was done during the project and recommendations which outline what could have been done differently from a design or project standpoint to provide insight for future designs. References for all researched information are included in order cited throughout the document. Finally all appendices are included at the end of the document that were referenced throughout the report as well as other important information

    CO2 Control of Trichodesmium N-2 Fixation, Photosynthesis, Growth rates, and Elemental Ratios: Implications for Past, Present, and Future Ocean Biogeochemistry

    Get PDF
    Diazotrophic marine cyanobacteria in the genus Trichodesmium contribute a large fraction of the new nitrogen entering the oligotrophic oceans, but little is known about how they respond to shifts in global change variables such as carbon dioxide (CO2) and temperature. We compared Trichodesmium dinitrogen (N2) and CO2 fixation rates during steady-state growth under past, current, and future CO2 scenarios, and at two relevant temperatures. At projected CO2 levels of year 2100 (76 Pa, 750 ppm), N2 fixation rates of Pacific and Atlantic isolates increased 35-100%, and CO2 fixation rates increased 15-128% relative to present day CO2 conditions (39 Pa, 380 ppm). CO2 mediated rate increases were of similar relative magnitude in both phosphorus (P)-replete and P-limited cultures, suggesting that this effect may be independent of resource limitation. Neither isolate could grow at 15 Pa (150 ppm) CO2, but N2 and CO2 fixation rates, growth rates, and nitrogen : phosophorus (N : P) ratios all increased significantly between 39 Pa and 152 Pa (1500 ppm). In contrast, these parameters were affected only minimally or not at all by a 4°C temperature change. Photosynthesis versus irradiance parameters, however, responded to both CO2 and temperature but in different ways for each isolate. These results suggest that by the end of this century, elevated CO2 could substantially increase global Trichodesmium N2 and CO2 fixation, fundamentally altering the current marine N and C cycles and potentially driving some oceanic regimes towards P limitation. CO2 limitation of Trichodesmium diazotrophy during past glacial periods could also have contributed to setting minimum atmospheric CO2 levels through downregulation of the biological pump. The relationship between marine N2 fixation and atmospheric CO2 concentration appears to be more complex than previously realized and needs to be considered in the context of the rapidly changing oligotrophic oceans

    Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures

    Get PDF
    The removal of styrene was studied using 2 biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and 1 biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for biofilters and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m-3 h-1 and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm-3, removal efficiencies between 70 and 95% were obtained in the 3 bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m-3 h-1 were obtained for the first quarter of the BF1-P and BF2-C, respectively (IL of 173 g m-3 h-1 and EBRT of 60 s in BF1-P; IL of 89 g m-3 h-1 and EBRT of 90 s in BF2-C). A maximum EC of 52 g m-3 h-1 was obtained for the first third of the BTF (IL of 116 g m-3 h-1, EBRT of 45 s). Problems regarding high pressure drop appeared in the peat biofilter, whereas drying episodes occurred in the coconut fibre biofilter. DGGE revealed that the pure culture used for biofilter inoculation was not detected by day 105. Although 2 different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option

    Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, <it>Pocillopora damicornis</it>, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, <it>P. damicornis </it>is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform.</p> <p>Description</p> <p>Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase <url>http://www.PocilloporaBase.org</url>. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae.</p> <p>Conclusions</p> <p><it>P. damicornis </it>now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase <url>http://www.PocilloporaBase.org</url>, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.</p

    Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Get PDF
    Christian R. Voolstra is with King Abdullah University of Science and Technology, Shinichi Sunagawa is with the European Molecular Biology Laboratory, Mikhail V. Matz is with UT Austin, Till Bayer is with King Abdullah University of Science and Technology, Manuel Aranda is with King Abdullah University of Science and Technology, Emmanuel Buschiazzo is with University of California Merced, Michael K. DeSalvo is with University of California San Francisco, Erika Lindquist is with the Department of Energy Joint Genome Institute, Alina M. Szmant is with University of North Carolina Wilmington, Mary Alice Coffroth is with State University of New York at Buffalo, Mónica Medina is with University of California Merced.Background -- Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings -- We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance -- This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.This work was supported by DEB-1054766 to M.V.M. and National Science Foundation grants IOS-0644438 and OCE-0313708 to M.M., and by a Collaborative Travel Fund to C.R.V. made by King Abdullah University of Science and Technology (KAUST). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals

    Get PDF
    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts
    corecore