8,870 research outputs found
A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter
The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations
Towards 3d multi-layer scaffolds for periodontal tissue engineering applications: Addressing manufacturing and architectural challenges
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects
Using instruments in the study of animate beings:Della Porta’s and Bacon’s experiments with plants
In this paper, I explain Francis Bacon's use of plants as philosophical instruments in the context of his Historia vitae et mortis. My main claim is that Bacon experimented with plants in order to obtain knowledge about the hidden processes of nature, knowledge that could be transferred to the human case and used for the prolongation of life. Bacon's experiments were based on Giambattista della Porta's reports from the Magia naturalis, but I show how a different metaphysics and research method made Bacon systematically rework, reconceptualise, and put to divergent uses the results of the same experimental reports
Legal determinants of external finance revisited : the inverse relationship between investor protection and societal well-being
This paper investigates relationships between corporate governance traditions and quality of life as measured by a number of widely reported indicators. It provides an empirical analysis of indicators of societal health in developed economies using a classification based on legal traditions. Arguably the most widely cited work in the corporate governance literature has been the collection of papers by La Porta et al. which has shown, inter alia, statistically significant relationships between legal traditions and various proxies for investor protection. We show statistically significant relationships between legal traditions and various proxies for societal health. Our comparative evidence suggests that the interests of investors may not be congruent with the interests of wider society, and that the criteria for judging the effectiveness of approaches to corporate governance should not be restricted to financial metrics
Beat-to-beat variability of microvascular peripheral resistances assessed with a non-invasive approach
The pressure-flow relationship at peripheral level is non-invasively studied in human subjects: the impedance function and the beat-to-beat variability series of microvascular peripheral resistance are estimated. The frequency content of this variability signal is compared to those of more classical variability series at rest and during mild supine physical exercise
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
The appearence of a new type of fast nonlinear traveling wave states in
binary fluid convection with increasing Soret effect is elucidated and the
parameter range of their bistability with the common slower ones is evaluated
numerically. The bifurcation behavior and the significantly different
spatiotemporal properties of the different wave states - e.g. frequency, flow
structure, and concentration distribution - are determined and related to each
other and to a convenient measure of their nonlinearity. This allows to derive
a limit for the applicability of small amplitude expansions. Additionally an
universal scaling behavior of frequencies and mixing properties is found.
PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure
- …