16 research outputs found

    Measurement of the β\beta-asymmetry parameter of 67^{67}Cu in search for tensor type currents in the weak interaction

    Full text link
    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general β\beta decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β\beta decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the β\beta-asymmetry parameter in the pure Gamow-Teller decay of 67^{67}Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a 3^3He-4^4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β\beta radiation was observed with planar high purity germanium detectors operating at a temperature of about 10\,K. An on-line measurement of the β\beta asymmetry of 68^{68}Cu was performed as well for normalization purposes. Systematic effects were investigated using Geant4 simulations. The experimental value, A~\tilde{A} = 0.587(14), is in agreement with the Standard Model value of 0.5991(2) and is interpreted in terms of physics beyond the Standard Model. The limits obtained on possible tensor type charged currents in the weak interaction hamiltonian are -0.045 <(CT+CT)/CA<< (C_T+C'_T)/C_A < 0.159 (90\% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β\beta decay and contribute to further constraining tensor coupling constants

    Electron shakeoff following the β+ decay of trapped 35Ar+ ions

    Get PDF
    The electron shakeoff of 35Cl atoms resulting from the β+ decay of 35Ar+ ions has been investigated using a Paul trap coupled to a recoil-ion spectrometer. The charge-state distribution of the recoiling daughter nuclei is compared to theoretical calculations accounting for shakeoff and Auger processes. The calculations are in excellent agreement with the experimental results and enable one to identify the ionization reaction routes leading to the formation of all charge states.D.R. acknowledges support from the Spanish ministry of Economy and Competitiveness under the project FPA2010-14803 and the action AIC10-D000562

    Space-charge effects in Penning ion traps

    Get PDF
    International audienceThe influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with 39 K + using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE / CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment , the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally , the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations

    Using GPU parallelization to perform realistic simulations of the LPCTrap experiments

    No full text
    International audienceThe LPCTrap setup is a sensitive tool to measure the β − ν angular correlation coefficient, a β ν , which can yield the mixing ratio ρ of a β decay transition. The latter enables the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V u d . In such a measurement, the most relevant observable is the energy distribution of the recoiling daughter nuclei following the nuclear β decay, which is obtained using a time-of-flight technique. In order to maximize the precision, one can reduce the systematic errors through a thorough simulation of the whole set-up, especially with a correct model of the trapped ion cloud. This paper presents such a simulation package and focuses on the ion cloud features; particular attention is therefore paid to realistic descriptions of trapping field dynamics, buffer gas cooling and the N-body space charge effects

    Electron shakeoff following the β+{\beta}^{+} decay of 19Ne+^{19}\mathrm{Ne}^{+} and 35Ar+^{35}\mathrm{Ar}^{+} trapped ions

    No full text
    The electron shakeoff of F19 and Cl35 atoms resulting from the β+ decay of Ne+19 and Ar+35 ions has been investigated using a Paul trap coupled to a time of flight recoil-ion spectrometer. The charge-state distributions of the recoiling daughter nuclei were compared to theoretical calculations based on the sudden approximation and accounting for subsequent Auger processes. The excellent agreement obtained for Cl35 is not reproduced in F19. The shortcoming is attributed to the inaccuracy of the independent particle model employed to calculate the primary shakeoff probabilities in systems with rather low atomic numbers. This calls for more elaborate calculations, including explicitly the electron-electron correlations

    Search for a scalar component in the weak interaction

    No full text
    International audienceWeak interactions are described by the Standard Model which uses the basic assumption of a pure “V(ector)-A(xial vector)” character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β–decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β–decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed
    corecore