25 research outputs found

    Prenatal diagnosis of HNF1B-associated renal cysts: Is there a need to differentiate intragenic variants from 17q12 microdeletion syndrome?

    Get PDF
    OBJECTIVE 17q12 microdeletions containing HNF1B and intragenic variants within this gene are associated with variable developmental, endocrine, and renal anomalies, often already noted prenatally as hyperechogenic/cystic kidneys. Here, we describe prenatal and postnatal phenotypes of seven individuals with HNF1B aberrations and compare their clinical and genetic data to those of previous studies. METHODS Prenatal sequencing and postnatal chromosomal microarray analysis were performed in seven individuals with renal and/or neurodevelopmental phenotypes. We evaluated HNF1B-related clinical features from 82 studies and reclassified 192 reported intragenic HNF1B variants. RESULTS In a prenatal case, we identified a novel in-frame deletion p.(Gly239del) within the HNF1B DNA-binding domain, a mutational hot spot as demonstrated by spatial clustering analysis and high computational prediction scores. The six postnatally diagnosed individuals harbored 17q12 microdeletions. Literature screening revealed variable reporting of HNF1B-associated clinical traits. Overall, both mutation groups showed a high phenotypic heterogeneity. The reclassification of all previously reported intragenic HNF1B variants provided an up-to-date overview of the mutational spectrum. CONCLUSIONS We highlight the value of prenatal HNF1B screening in renal developmental diseases. Standardized clinical reporting and systematic classification of HNF1B variants are necessary for a more accurate risk quantification of prenatal and postnatal clinical features, improving genetic counseling and prenatal decision making

    Machine learning for optimized individual survival prediction in resectable upper gastrointestinal cancer

    No full text
    Purpose Surgical oncologists are frequently confronted with the question of expected long-term prognosis. The aim of this study was to apply machine learning algorithms to optimize survival prediction after oncological resection of gastroesophageal cancers. Methods Eligible patients underwent oncological resection of gastric or distal esophageal cancer between 2001 and 2020 at Heidelberg University Hospital, Department of General Surgery. Machine learning methods such as multi-task logistic regression and survival forests were compared with usual algorithms to establish an individual estimation. Results The study included 117 variables with a total of 1360 patients. The overall missingness was 1.3%. Out of eight machine learning algorithms, the random survival forest (RSF) performed best with a concordance index of 0.736 and an integrated Brier score of 0.166. The RSF demonstrated a mean area under the curve (AUC) of 0.814 over a time period of 10 years after diagnosis. The most important long-term outcome predictor was lymph node ratio with a mean AUC of 0.730. A numeric risk score was calculated by the RSF for each patient and three risk groups were defined accordingly. Median survival time was 18.8 months in the high-risk group, 44.6 months in the medium-risk group and above 10 years in the low-risk group. Conclusion The results of this study suggest that RSF is most appropriate to accurately answer the question of long-term prognosis. Furthermore, we could establish a compact risk score model with 20 input parameters and thus provide a clinical tool to improve prediction of oncological outcome after upper gastrointestinal surgery

    Prenatal diagnosis of HNF1B‐associated renal cysts: Is there a need to differentiate intragenic variants from 17q12 microdeletion syndrome?

    No full text
    Objective 17q12 microdeletions containing HNF1B and intragenic variants within this gene are associated with variable developmental, endocrine, and renal anomalies, often already noted prenatally as hyperechogenic/cystic kidneys. Here, we describe prenatal and postnatal phenotypes of seven individuals with HNF1B aberrations and compare their clinical and genetic data to those of previous studies. Methods Prenatal sequencing and postnatal chromosomal microarray analysis were performed in seven individuals with renal and/or neurodevelopmental phenotypes. We evaluated HNF1B‐related clinical features from 82 studies and reclassified 192 reported intragenic HNF1B variants. Results In a prenatal case, we identified a novel in‐frame deletion p.(Gly239del) within the HNF1B DNA‐binding domain, a mutational hot spot as demonstrated by spatial clustering analysis and high computational prediction scores. The six postnatally diagnosed individuals harbored 17q12 microdeletions. Literature screening revealed variable reporting of HNF1B‐associated clinical traits. Overall, both mutation groups showed a high phenotypic heterogeneity. The reclassification of all previously reported intragenic HNF1B variants provided an up‐to‐date overview of the mutational spectrum. Conclusions We highlight the value of prenatal HNF1B screening in renal developmental diseases. Standardized clinical reporting and systematic classification of HNF1B variants are necessary for a more accurate risk quantification of prenatal and postnatal clinical features, improving genetic counseling and prenatal decision making

    Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome

    No full text
    International audienceVariants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity
    corecore