442 research outputs found
Recommended from our members
Periodic array-based substrates for surface-enhanced infrared spectroscopy
At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS) surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS), SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures
Recommended from our members
Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance
Recommended from our members
Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy
Raman spectroscopy is an analytical method to identify medical samples of bacteria. Because Raman spectroscopy detects the biochemical properties of a cell, there are many factors that can influence and modify the Raman spectra of bacteria. One possible influence is a proper method for isolation of the bacteria. Medical samples in particular never occur in purified form, so a Raman-compatible isolation method is needed which does not affect the bacteria and thus the resulting spectra. In this study, we present a Raman-compatible method for isolation of bacteria from bronchoalveolar lavage (BAL) fluid using density gradient centrifugation. In addition to measuring the bacteria from a patient sample, the yield and the spectral influence of the isolation on the bacteria were investigated. Bacteria isolated from BAL fluid show additional peaks in comparison to pure culture bacteria, which can be attributed to components in the BAL sample. The isolation gradient itself has no effect on the spectra, and with a yield of 63% and 78%, the method is suitable for isolation of low concentrations of bacteria from a complex matrix. Graphical abstract
Girls and violence: a neglected aspect of school violence research
Ausgehend von dem Befund, nach dem Schülergewalt vorrangig ein Jungenphänomen ist, wird mit Hilfe der Daten einer repräsentativen Schüler(innen)befragung und einer qualitativen Schulfallstudie der Frage nachgegangen, ob es auch weibliche \u27Täter\u27 gibt. Die kleine Gruppe aggressiver Mädchen (4%), die sich an Schulen häufig in physische Auseinandersetzungen begibt, steht in diesem Beitrag im Zentrum des Interesses. Vergleicht man die Minderheit der weiblichen \u27Täter\u27 mit der entsprechenden Gruppe der männlichen \u27Täter\u27, sind kaum geschlechtstypische Unterschiede festzustellen. Das zeigt sich in Ausprägung und Häufigkeit selbstberichteten Gewalthandelns sowie bei Einstellungen Gewalt gegenüber. Auch die wahrgenommene Qualität der innerschulischen und außerschulischen Sozialisationskontexte variieren zwischen Täterinnen und Tätern kaum, zwischen Täter(inne)n und an Gewalt unbeteiligten Schüler(inne)n dagegen erheblich. Für aggressive Mädchen hat sich ein gewaltbefürwortendes Klima in der Freundesgruppe als gewaltverstärkender Faktor herausgestellt, während ein durch Akzeptanz getragenes Lehrerverhalten bei Mädchen offensichtlich gewaltmindernd wirkt. (DIPF/Orig.)Research findings show that violence in schools is primarily carried out by male students. Using the data ofa representative student questionaire as well as a qualitative school case study, this investigation focuses on school violence carried out by girls, in particular the small group of aggressive girls (4%) who are frequently involved in physical conflicts in school. A comparison of this small group of female offenders with the corresponding group of male offenders reveals few gender differences in the forms and in frequency of self-reported violent acts as well as in attitudes toward violence. Few differences are found in the way female and male offenders perceive the quality of their social environment within and outside of the school. In contrast large differences were found between the perceptions of offenders and pupils not involved in violence. For violent girls a climate of approval of violence in their peer group appears to be a factor which increases violent behaviors whereas teachers\u27 acceptance of such girls as persons apparently reduces violent behaviors. (DIPF/Orig.
Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification
In recent years, vibrational spectroscopic techniques based on Fourier transform infrared (FTIR) or Raman microspectroscopy have been suggested to fulfill the unmet need for microplastic particle detection and identification. Inter-system comparison of spectra from reference polymers enables assessing the reproducibility between instruments and advantages of emerging quantum cascade laser-based optical photothermal infrared (O-PTIR) spectroscopy. In our work, IR and Raman spectra of nine plastics, namely polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polycarbonate, polystyrene, silicone, polylactide acid and polymethylmethacrylate were simultaneously acquired using an O-PTIR microscope in non-contact, reflection mode. Comprehensive band assignments were presented. We determined the agreement of O-PTIR with standalone attenuated total reflection FTIR and Raman spectrometers based on the hit quality index (HQI) and introduced a two-dimensional identification (2D-HQI) approach using both Raman- and IR-HQIs. Finally, microplastic particles were prepared as test samples from known materials by wet grinding, O-PTIR data were collected and subjected to the 2D-HQI identification approach. We concluded that this framework offers improved material identification of microplastic particles in environmental, nutritious and biological matrices
Recommended from our members
Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis
Recommended from our members
The Bouguer-Beer-Lambert Law: Shining Light on the Obscure
The Beer-Lambert law is unquestionably the most important law in optical spectroscopy and indispensable for the qualitative and quantitative interpretation of spectroscopic data. As such, every spectroscopist should know its limits and potential pitfalls, arising from its application, by heart. It is the goal of this work to review these limits and pitfalls, as well as to provide solutions and explanations to guide the reader. This guidance will allow a deeper understanding of spectral features, which cannot be explained by the Beer-Lambert law, because they arise from electromagnetic effects/the wave nature of light. Those features include band shifts and intensity changes based exclusively upon optical conditions, i. e. the method chosen to record the spectra, the substrate and the form of the sample. As such, the review will be an essential tool towards a full understanding of optical spectra and their quantitative interpretation based not only on oscillator positions, but also on their strengths and damping constants
Recommended from our members
Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications
Raman spectra of biological samples often exhibit variations originating from changes of spectrometers, measurement conditions, and cultivation conditions. Such unwanted variations make a classification extremely challenging, especially if they are more significant compared with the differences between groups to be separated. A classifier is prone to such unwanted variations (ie, intragroup variations) and can fail to learn the patterns that can help separate different groups (ie, intergroup differences). This often leads to a poor generalization performance and a degraded transferability of the trained model. A natural solution is to separate the intragroup variations from the intergroup differences and build the classifier based on merely the latter information, for example, by a well-designed feature extraction. This forms the idea of this contribution. Herein, we modified two commonly applied feature extraction approaches, principal component analysis (PCA) and partial least squares (PLS), in order to extract merely the features representing the intergroup differences. Both of the methods were verified with two Raman spectral datasets measured from bacterial cultures and colon tissues of mice, respectively. In comparison to ordinary PCA and PLS, the modified PCA was able to improve the prediction on the testing data that bears significant difference to the training data, while the modified PLS could help avoid overfitting and lead to a more stable classification. © 2019 The Authors. Journal of Chemometrics published by John Wiley & Sons Lt
- …