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Abstract

Raman spectra of biological samples often exhibit variations originating from

changes of spectrometers, measurement conditions, and cultivation conditions.

Such unwanted variations make a classification extremely challenging, espe-

cially if they are more significant compared with the differences between groups

to be separated. A classifier is prone to such unwanted variations (ie, intragroup

variations) and can fail to learn the patterns that can help separate different

groups (ie, intergroup differences). This often leads to a poor generalization per-

formance and a degraded transferability of the trained model. A natural solution

is to separate the intragroup variations from the intergroup differences and build

the classifier based on merely the latter information, for example, by a well‐

designed feature extraction. This forms the idea of this contribution. Herein,

we modified two commonly applied feature extraction approaches, principal

component analysis (PCA) and partial least squares (PLS), in order to extract

merely the features representing the intergroup differences. Both of the methods

were verified with two Raman spectral datasets measured from bacterial cul-

tures and colon tissues of mice, respectively. In comparison to ordinary PCA

and PLS, the modified PCA was able to improve the prediction on the testing

data that bears significant difference to the training data, while the modified

PLS could help avoid overfitting and lead to a more stable classification.
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1 | INTRODUCTION

Raman spectroscopy saw dramatic growth in biological applications in the last two decades, thanks to its features: label‐
free, noninvasive, and almost insensitive to water.1,2 Raman‐based studies have covered a large variety of biological
fields, including but not limited to toxicology and forensics,3 microbiology,4 drug discovery,5,6 metabolic investigations,7

and even in vivo detection.8 Notably, Raman spectroscopy has found its place in process analytical technology (PAT); for
example, it was employed to optimize ethanol fermentation.9 Apart from the technical improvement in Raman spectros-
copy, the booming of these applications owes to a large extent to chemometrics, where the Raman signals are translated
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into high‐level chemical and/or biological information of interest.10 Such translation is usually conducted with a statis-
tical model that takes in the Raman signals and outputs the high‐level information such as biological compositions, dis-
ease levels, or bacterial types. This model is usually built on a certain number of known samples (ie, training data) and
then used to predict unknown samples in a future phase to obtain the requested high‐level information directly.

While a regression model is needed in quantitative applications, chemometrics in Raman‐based biological
applications boils down mostly to a classification task, for instance, to distinguish alterated against healthy
cells/tissues or to differentiate different bacterial species/strains. To classify Raman spectra in biological applications
is challenging because of multiple reasons. First of all, the high dimensionality of Raman spectra can hinder a classifi-
cation, especially if the number of samples is limited, as it is often encountered in biological applications. Furthermore,
spectral variations caused by biological changes of interest (ie, intergroup variations) are very subtle and hard to detect.
More importantly, samples of the same biological group may exhibit different spectral features because of changes in
spectrometers, environmental conditions, and cultivation conditions. The subtle intergroup spectral differences are eas-
ily overwhelmed by intragroup spectral variations, which can degrade the stability and generalizability of a classifier.
With this regard, separating the intergroup variations from the unwanted changes can help improve the performance
of the classification. This can be achieved with the help of feature selection, ie, to choose a subset of variables that
are more different between groups and less sensitive to experimental changes.11,12 In most cases, however, feature selec-
tion is time consuming and its performance relies largely on the procedure that is used for feature searching.

An alternative is feature extraction, which aims to transform data into a new space of lower dimension without losing
key information. The new space is calculated to represent the major pattern of the dataset. However, it is not natural for
feature extraction approaches to extract intergroup variations. This can be explained using two examples, the principal
component analysis (PCA) and partial least squares (PLS). PCA projects datasets along the direction representing the larg-
est sources of variance and captures the representative properties of a dataset. It is an unsupervised method, thus the
resulting components do not necessarily reveal patterns that are directly related to the classification. The first principal
components represent the largest variances in the dataset, which can very likely be the intragroup variations. To select
the components directly related to the classification is possible but tedious. The situation is slightly better with PLS. As
a supervised method, PLS seeks for projections so that the different groups show the best separation in the new data space.
However, PLS is not completely robust to the intragroup variations. The influence of the unwanted variations on PLS is
manifested by the fact that PLS is easily overfitted. Also, its performance largely depends on the number of components to
be used in the subsequent analysis. An optimization procedure is cumbersome and remains an open issue.

To improve the quality of the extracted features and hence the performance of the classification, both PCA and PLS
were modified in this contribution. The investigation was conducted on the basis of two Raman spectral datasets, which
were measured from mice colon tissues and bacteria, respectively. The proposed methods were verified by the results of
the classification models, and the performance was compared with their ordinary counterparts. It was proven that the
modified PCA (mPCA) could help build a model with better generalizability, while the modified PLS (mPLS) is able to
improve the stability of the model and avoid overfitting.
2 | EXPERIMENTAL AND METHODS
2.1 | Datasets

2.1.1 | Mice colon dataset

This dataset was measured from colon and rectum tissues of mice. The measurement was done in two cases: fully pre-
pared samples from 47 individuals and biopsy samples from 97 individuals. Raman microspectroscopy was conducted in
a grid‐scan manner on each tissue sample, resulting in a certain number of Raman spectra for each sample. The number
of spectra differed from sample to sample, depending on the size of the tissue. The annotation of each Raman spectrum
was determined by a pathologic inspection on hematoxylin and eosin (HE)–stained tissue sections. We defined seven
classes for the annotation: normal epithelium, hyperplasia, adenoma, and carcinoma, which indicate the states of the
adenoma‐carcinoma sequence. All other tissue types except the epithelium were annotated as “morphology.” The anno-
tation “spectroscopy” denotes substrate background or spectroscopic artifacts like burning or fluorescence, while “ques-
tion” means an unambiguous annotation was impossible. The details of the sample preparation, Raman spectroscopy,
and annotation can be found in Vogler et al.13 In Table 1, we listed the number of samples belonging to the four



TABLE 1 Sample size of the mice colon dataset summarized after all preprocessing steps

Normal Hyperplasia Adenoma Carcinoma In total

Prepared #mice 47 12 37 14 47
#scans 219 63 150 53 485

Biopsy #mice 76 17 26 2 97
#scans 171 21 43 2 237
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adenoma‐carcinoma states. To make it clear, we will refer to data or samples from the same mouse/individual as one
replicate in the following text. For the analysis in this contribution, we used only the Raman spectra from normal, ade-
noma, and carcinoma groups. In addition, we combined adenoma and carcinoma as “abnormal” group and built a
binary classification: normal against abnormal.
2.1.2 | Bacteria dataset

The dataset is composed of Raman spectra measured in single‐cell mode from six bacterial species: Escherichia coli DSM
423 (E. coli), Klebsiella terrigena DSM 2687 (K. terrigena), Pseudomonas stutzeri DSM 5190 (P. stutzeri), Listeria innocua
DSM 20649 (L. innocua), Staphylococcus warneri DSM 20316 (S. warneri), and Staphylococcus cohnii DSM 20261 (S.
cohnii). All species were independently cultivated in nine replicates. The sample preparation and Raman spectroscopy
has been described in one of our previous studies.14 The sample size of each species was summarized in Table 2. The
mean spectra of the six species are shown in Figure 2A.
2.2 | Data analysis

2.2.1 | Modified principal component analysis

Given a dataset X ∈ Rm,n composed of l groups and k replicates, the loadings V of mPCA are calculated by a singular

value decomposition (SVD) on ∑′

X, as is given by Equation (1). Herein, ∑′

X is calculated by Equation (2), where ∑X

represents the covariance matrix of all spectra in the dataset, and ∑sub gives the covariance matrix from intragroup var-
iances. By subtracting ∑sub from ∑X, the obtained principal components V are supposed to indicate merely the vari-
ances of interest, ie, the intergroup differences. The ∑sub is formulated as Equation (3) in our study, where the three
items represent the interreplicate, intrareplicate, and intergroup variations, respectively. In particular, the covariance

matrix ∑g
br is calculated from the mean spectra of each replicate belonging to the gth group. ∑i;g

wr is the covariance
matrix of the ith replicate belonging to the gth group. ∑bg is the covariance matrix from the mean spectra of each group.

∑
0
X ¼ USV 0; (1)

∑
0
X ¼ ∑X −∑sub; (2)

∑sub ¼
1
l
∑
l

g¼0
∑g

br þ
1
l⋅k

∑
l

g¼0
∑
k

i¼0
∑i;g

wr −∑bg: (3)
TABLE 2 Sample size of the bacteria dataset. The information was summarized based on preprocessed spectra, excluding the outliers

Gram negative (Gram−) Gram positive (Gram+)

Species
Escherichia
coli

Pseudomonas
stutzeri

Klebsiella
terrigena

Listeria
innocua

Staphylococcus
cohnii

Staphylococcus
warneri

#Spectra 447 458 451 455 449 448



FIGURE 2 Mean spectra and correlation coefficients of bacteria dataset. A, Mean spectra of each species calculated from all batches. The

key Raman bands were marked by dash lines. B, Intergroup correlation coefficients calculated from the mean spectrum of each species. C‐H,

Interreplicate correlation coefficients of different species, calculated from the mean spectrum of each batch from the same species. In

particular, species Listeria innocua, Staphylococcus cohnii, and Staphylococcus warneri are Gram positive (Gram+) while the other three

species are Gram negative (Gram−). The intragroup variations surpass the intergroup differences if the interreplicate coefficients are higher

than the intergroup coefficients and vice versa. Accordingly, the differences between Gram+ and Gram− are marginally higher than the

intrareplicate variations. The two variations are comparable for the three Gram+ species. The intragroup variations are larger than the

intergroup variations for the Gram− species, especially in the case of Escherichia coli and Klebsiella terrigena.

FIGURE 1 Mean spectra, variances, and difference spectrum of the mice colon data. The mean and difference spectra are shown as solid

lines in both plots, while the variances are given as the red/blue shade. The key Raman bands were marked by dash lines. The mean spectra

of the two groups are very similar to each other. Their differences, as is shown in (B), are mostly dominated by the intragroup variances. The

only dominating intergroup difference was observed for the Raman band 784 cm−1
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2.2.2 | Modified partial least squares

Similar to mPCA, the idea of mPLS is to calculate projection vectors that represent merely the variations of interest, ie,
the intergroup variations in this study. As the first step, the matrix ∑sub was decomposed by a SVD to obtain the load-
ings (Lsub) representing the intragroup variations. The calculation of mPLS was based on the SIMPLS algorithm,15 by
orthogonalizing the projection vectors (P) against Lsub during the iteration. The orthogonalization of P(j) against Lsub

(k), according to the Gram‐Schmidt method, is shown in Equation (4). The j,k represent the indices of column vectors
in P and Lsub, respectively. In the end, we could obtain the score vectors of mPLS based on the projection vectors Pot.
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Pot jð Þ ¼ P jð Þ− P jð Þ·Lsub kð Þ
Lsub kð Þ·Lsub kð Þ

� �
Lsub kð Þ; j; k ¼ 1; 2; ⋯: (4)

2.2.3 | Method validation

The performance of mPCA and mPLS were compared with that of the ordinary PCA and PLS on the basis of the two
above‐mentioned datasets. All data analyses were conducted with in‐house written scripts based on R language.16

The analysis of the mice colon data started from the spikes removal for each single spectrum using a derivative‐based
algorithm, followed by a wavenumber calibration on the basis of a standard material 4‐acetamedophenol.17 The fluores-
cence baseline was then corrected by the alternative least squares (ALS).18 All spectra were truncated to 675 to 1800
cm−1 after baseline correction, and a vector normalization (ie, l2 norm) was conducted. We did not perform outlier
detection but only excluded the spectra belonging to groups “morphology,” “spectroscopy,” and “question” according
to the annotation process done in Vogler et al.13 After all these preprocessing steps, we averaged the spectra belonging
to the same group for each scan. This averaging procedure may result in one, two, three, or four spectra out of one scan,
depending on how many groups were there in this scan. The sample size given in Table 1 was summarized on the basis
of the average spectra. The mean and difference spectra after preprocessing are plotted along with the variances in
Figure 1 for normal and abnormal groups. The two groups were differentiated with a binary classifier composed of
(m)PCA/(m)PLS and linear discriminant analysis (LDA). Only the prepared samples were used for the model training;
the biopsy samples were used merely as testing data. The model building was combined with a 10‐fold cross‐validation,
in which both feature extraction and LDA were involved within the cross‐validation loop (see “inside CV” in Guo
et al19). Data from the same mouse were used exclusively in one fold. The biopsy samples were predicted every time
the model was built during the cross‐validation. The performance of the classification was benchmarked by the mean
sensitivity, which is defined in Equation (5) for an l‐group classification task.

s ¼ 1
l
∑
l

i¼1
s ið Þ: (5)

In the case of the bacteria data, the spikes were detected by comparing two repeated measurements, and their values
were replaced with the lower intensities of the two spectra. The two spectra without spikes were averaged so that we
would get a single spectrum for each cell. Subsequent wavenumber calibration and baseline correction were conducted
with the same approaches as for the mice colon data. The resulting spectra were vector‐normalized after removing the
silent region (1750 to 2800 cm−1). In the end, we excluded three Raman spectra from further analysis because of obvious
burning artifacts (Figure S1); no additional outlier detection was performed. The sample size was summarized in
Table 2 after all preprocessing steps. The mean spectra of each species were plotted in Figure 2A. The dataset was then
fed into a two‐layer classification model: a binary classifier in the first layer to separate Gram positive (Gram+) against
Gram negative (Gram−), following two three‐group classifiers in the second layer to differentiate the three Gram+ and
Gram− species, respectively. We used (m)PCA/(m)PLS in combination with an LDA for all the three classifiers. The
classification was performed in combination with a leave‐one‐replicate out cross‐validation in “inside CV” mode.19

The performance was benchmarked by the mean sensitivity (Equation 5).
3 | RESULTS AND DISCUSSION

3.1 | Mice colon data

One of the requirements for the proposed method to work is that the intergroup variations are not significantly
sacrificed by removing the intragroup variations. To verify this point, we checked the loading vectors of the matrix ∑sub

shown in Figure 3 and compared them with the variance and difference spectrum given in Figure 1B. The Raman bands
at 1002, 1312, 1448, and 1658 cm−1, where we see dominating intragroup variances (shades in Figure 1B), are visible in
the two loadings. This demonstrated that the intragroup variations are captured well by ∑sub. In addition, there is no
significant signal at 784 cm−1 in either loading, where the intergroup differences were larger than the intragroup



FIGURE 3 The first two loadings that

are calculated from the matrix ∑sub. The

peaks at 1002, 1312, 1448, and 1658 cm−1

represent high intragroup variances,

which is consistent with the variances

shown in Figure 1. The peak at 784 cm−1,

which features major intergroup

differences, is not visible in either loading
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variances. Although it is too early to say whether the intergroup variations are completely retained, we can already con-
clude that the major features related to the intergroup differences are not sacrificed.

The influence of the modification on the calculated loadings is indicated by the first two components of the ordinary
PCA and the mPCA plotted in Figure 4. Comparing with the ordinary PCA, the band located around 784 cm−1 was sig-
nificantly enhanced in the first loading of the mPCA. This is consistent with the biological knowledge that the amount
of RNA/DNA, represented by the Raman band at around 784 cm−1, is significantly different between normal and can-
cerous groups. The difference spectrum in Figure 1B also indicates this fact: the intergroup difference visibly surpasses
the intragroup variances within the region around 784 cm−1. In the meantime, the sharp band at around 1002 cm−1,
which is dominating in both loadings of ordinary PCA because of the large intragroup variances, is suppressed in both
FIGURE 4 The loadings and scores of the first two components for ordinary (A,B) and modified (C,D) principal component analysis

(PCA). The major intergroup difference was enhanced in modified PCA (mPCA) loadings comparing with the loadings of the ordinary

PCA. The Raman bands at 1002, 1312, 1448, and 1658 cm−1 showing large intragroup variations are suppressed but still present in the mPCA

loadings. In comparison of the scores plots in (B) and (D), a clearer separation between the normal and abnormal groups is obtained with

mPCA.
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loadings of the mPCA. Nonetheless, the features at 1002, 1312, 1448, and 1658 cm−1 are still present in the mPCA load-
ings. This indicates most probably that the amount of protein differs as well between normal and cancer cells. On the
basis of these facts, it is reasonable to say that the mPCA suppresses features bearing large intragroup variations but not
significantly sacrifices intergroup differences. Consequently, we could see a better separation of the two groups with the
mPCA than the ordinary PCA in the score plots of the first two components.

We could verify the influence of the modification on the PLS in a similar way. As it is shown in Figure S2(A,B), the
Raman band at around 784 cm−1 was already well represented in the projection vectors and the two groups were well sep-
arated by the ordinary PLS. This is reasonable considering the fact that PLS is a supervised method and extracts features
mostly related to the intergroup differences. Nonetheless, we could still see the difference between the ordinary PLS and
mPLS. The bands at around 1002, 1312, 1448, and 1658 cm−1 were still present but suppressed in the case of mPLS (Figure
S2C), indicating a reduced contribution of intragroup variations in the mPLS model. In comparison of Figure S2B,D, we
could see more compact cluster of the same group for mPLS, even though the separability between the groups was not
improved.

Besides the output of the mPCA and mPLS, we tested further their performance with the binary classification of the
mice colon data. In particular, the prepared samples were predicted by a 10‐fold cross‐validation while the biopsy sam-
ples were predicted 10 times during the cross‐validation using the model built on nine out of the 10 folds. The mean
sensitivity for the biopsy samples was calculated for each of the 10 predictions and averaged. The biopsy samples were
only predicted, because of two reasons. First, this approach aligns with the diagnostic workflow in practice. Second, a
well‐known fact in real diagnostics is that the prepared and biopsy samples are significantly different and a model trans-
fer is very likely needed to predict biopsy samples with a model built on prepared samples. With this experiment, we
aim to check if the prediction on biopsy samples can be improved by modifying the PCA and PLS.

The mean sensitivity of the predictions is shown in Figure 5, in which the results from ordinary and modified
PCA/PLS were plotted in blue and red color, respectively. The prediction of the prepared samples was comparable
for ordinary PCA and mPCA. A possible reason is that the classifier learns well about the intergroup differences based
on the sufficiently large number of mice. A modification of PCA does not further improve the performance. Nonethe-
less, the classifier became more tolerant to the differences between the prepared and biopsy samples, and the prediction
FIGURE 5 Mean sensitivity of mice colon dataset as a function of number of components (nPC/nLV), using (m)PCA/(m)PLS as the

feature extraction methods. The “Preparation” and “Biopsy” denote the results of cross‐validation and prediction of the biopsy samples,

respectively. The prediction on preparation data were comparable for the modified and ordinary PCA, while an improvement was seen for

mPCA to predict the biopsy samples. The results of PLS was marginally higher for mPLS than ordinary PLS, especially with higher number of

components. mPCA, modified PCA; mPLS, modified PLS; PCA, principal component analysis; PLS, partial least squares.
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of the biopsy samples was improved to almost the same level as for the prediction on the prepared samples. This dem-
onstrates a better generalization/transferability of the model from the prepared samples to biopsy samples. The results
of PLS tells a different story. The ordinary PLS and the mPLS are comparable in terms of their highest mean sensitivity
over different number of components (nLV). This can be explained by the fact that the mPLS does not improve the sep-
arability of the two groups, as it was discussed previously. However, the advantage of the mPLS is demonstrated when it
comes to higher values of nLV. The mean sensitivity drops sharply with increased nLV after the peak point in the case
of the ordinary PLS. The decrease was much slower for the mPLS. That is to say, the mPLS‐based classification is more
stable and less prone to overfitting because of the lower influence from intragroup variations.
3.2 | Bacteria data

The performance of the mPCA and mPLS was further verified on the basis of the bacteria data. The classification was
achieved using a two‐layer model, as it was described in the previous section. With almost equal number of spectra for
each species and replicate, we could discuss the results taking the different levels of intragroup and intergroup varia-
tions into account. To do so, we visualized the mean sensitivity of not only the two‐layer classification (Figure 6A,B)
but also the two 3‐group classifiers in the second layer (Figure 6C‐F). In addition, we calculated the Pearson correlation
FIGURE 6 Mean sensitivity of the hierarchical models for the bacteria dataset as a function of the number of components (nPC/nLV). The

results of ordinary and modified PCA/PLS are plotted in blue and red color, respectively. The prediction was better for mPCA than ordinary

PCA in the case of two‐layer model and the classification of Gram− species, while ordinary PCA is better at differentiating the Gram+

species. The mean sensitivity is not improved by mPLS compared with the ordinary PLS, but it decreases much slower with nLV in the case of

mPLS. mPCA, modified PCA; mPLS, modified PLS; PCA, principal component analysis; PLS, partial least squares.



GUO ET AL. 9 of 10
coefficients as a metric of the intergroup and intragroup variations. The intergroup correlation (Figure 2B) was com-
puted from the mean spectra of different species, while the intragroup correlation (Figure 2C‐H) was calculated for each
species using the mean spectra of different replicates.

Apparently, the performance of mPCA varies among different classifications, as can be seen from the left column in
Figure 6. A better prediction was achieved with mPCA for the two‐layer model (Figure 6A) and the separation of the
Gram− species (Figure 6C). However, the mPCA was inferior to the ordinary PCA in terms of the classification of the
Gram+ species (Figure 6E). To explain this issue, we calculated the correlation coefficients between different species
and between replicates, as were shown in Figure 2B‐H. It is obvious from the plots that the intergroup variations are lower
than the intragroup variations for the Gram+ species. The separation of the Gram+ species was almost tolerant to the
intragroup variations. A further modification of PCA is hence unnecessary and can negatively impact their performance.
The situation is different for the Gram− species, where the intergroup variations are too small to compete the intragroup
variations. It is helpful to remove the intragroup variations from the calculation. This fact is more obvious when it comes
to the binary classification between E. coli and K. terrigena (E‐K). In this case, the intergroup variations are highly dom-
inated by the intragroup variations (see Figure 2B,F,H), and the mean sensitivities (Figure S3) were marginally better for
the mPCA than for the ordinary PCA. On the basis of these results, we would like to stress that the mPCA should be used
with caution. It is recommended that the intergroup and intragroup variations be compared at the first place. The mPCA
is more suited if the intergroup differences are dominated by the intragroup variations.

In comparison with PCA, the competition between intergroup and intragroup variations is less influential for the
mPLS. The performance was seen similar in the three classification tasks (Figure 6B,D,F). This originates from the fact
that PLS is a supervised approach and extracts features that are mostly related to the separation. The removal of the
intragroup variations does not significantly influence the separability but only improves the stability of the model, as
it was discussed previously. The results in Figures 6 and S3 once again proved this fact, as the highest mean sensitivity
was comparable for mPLS and ordinary PLS. Nonetheless, the mPLS becomes more stable and less overfitted in general.
This is especially obvious for the E‐K binary classification (Figure S3B), in which the ordinary PLS degrades sharply
with higher nLV because of the significant intragroup variations. The prediction became more stable over nLV by
removing the intragroup variations in the case of mPLS.

Besides the competition between intragroup and intergroup variations, another issue may also influence the perfor-
mance of mPCA and mPLS: the sample size. Here, we refer it to especially the number of replicates included in the
training data. It is required that the replicates form a good representative of intragroup variations. Otherwise, the
intragroup variations cannot be well extracted or removed properly from the calculation. The influence of sample size
in statistical modeling falls into the field of sample size planning and was investigated in one of our latest studies.14
4 | CONCLUSION

In this study, we modified two commonly used feature extraction methods, PCA and PLS, in order to deal with the large
intragroup variations caused by experimental changes from replicate to replicate. With this modification, we could
improve the generalization performance or stability of the classification models. In particular, we modeled the
intragroup variations into a matrix (∑sub) composed of variations between‐ and within‐replicates excluding the inter-
group differences. The PCA and PLS was conducted so that the extracted loading/projection vectors are orthogonal to
the intragroup variations, which results in the features represent merely the variations of interest. The proposed
methods were tested with two Raman spectral datasets measured from mice colon tissues and bacteria, respectively.
Their performance was benchmarked by the mean sensitivity of different classification tasks in combination with a
leave‐one‐replicate cross‐validation. With the mice colon data, we could observe a better transferability/generalization
of the classifier from the prepared to the biopsy samples. It was found using the bacteria dataset that the performance of
mPCA is dependent on the ratio between intragroup and intergroup variations. The mPCA is more suited if the
intragroup variations are larger than the intergroup differences. Otherwise, the modification may degrade the classifi-
cation. This was different for PLS. Despite no significant improvement for the separation between groups, mPLS was
found to yield more compact group clusters in the scores space. This helps improve the stability of the classification
and avoid overfitting of the model, as was demonstrated in this study. In particular, we conducted the classification
in all cases with nPC/nLV ranging up to 100 for a more conclusive comparison between ordinary and modified
PCA/PLS. However, in practice, classification and regression models should be constructed with lower nPC/nLV to
increase their robustness.
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