13 research outputs found

    Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Get PDF
    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times

    Hardening by ion implantation of VT1-0 alloy having different grain size

    Get PDF
    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case

    Modification of structural phase state and mechanical properties of poly-grained titanium alloy implanted by aluminum ions

    Get PDF
    The paper presents TEM analysis of microstructure, phase composition, and mechanical properties of commercially pure titanium. These properties of two types of grains are compared before and after modification of titanium by aluminum ions, namely: large grains (1.4 μm) and small (0.5μm) grains. The analysis shows that ion implantation results in a considerable improvement of mechanical properties of both large and small grains throughout their implantation depth. However, with increase of the grain size, the stress in the ion-modified surface layer decreases while in the subsurface layer it increases

    Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    No full text
    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times

    Grain size effect on the type VT1-0 alloy modified by aluminum ion implantation

    No full text
    The paper presents results of investigations of α-Ti microhardness modified by aluminum ions having diverse grain sizes, namely: 0.3 μm, 1.5 μm, and 17 μm. These investigations show that the decrease of the grain size and the additional ion implantation result in the significant modification of the structural and phase state of the alloy and its mechanical properties

    Grain shape and size and structural and phase conditions modified by aluminum ion implantation in UFG titanium

    No full text
    The paper presents the transmission electron microscopy investigations of the granular state and the structural and phase conditions of commercially pure ultra-fine grain (UFG) titanium VT1-0 alloyed with aluminum ions. The UFG-titanium is obtained by the multiple uniaxial compaction with intermediate annealing. The ion implantation is carried out on Mevva-V.Ru ion source at ion-implantation dosages of 1·1017, 5·1017 and 1·1018 ion/cm2. The functions are constructed for the grain size distribution in longitudinal and cross sections; the average grain size and the grain anisotropy factor are determined in this paper. It is shown that the grain shape and size of titanium specimens are modified due to the ion implantation. With the increase of the ion-implantation dosage the anisotropy factor decreases three times. At 1·1018 ion/cm2 ion-implantation dosage the longitudinal grain size comes to 0.7 μm. The phase composition of the alloy is detected after the ion implantation and its modification induced by the implantation dosage. The quantitative characteristics and locations of secondary β-Ti, TiAl3, Ti3Al, TiC and TiO2 phases are ascertained during the investigations. It is shown that TiAl3 and Ti3Al are ordered phases formed during the ion implantation on α-Ti grain boundaries. The volume ratios of these phases are detected and determined by the ion-implantation dosage. The volume ratios of α-Ti and secondary TiC and TiO2 phases do not depend on the implantation dosage and range between 0.3-0.9 vol.%

    Modification of structural phase state and mechanical properties of poly-grained titanium alloy implanted by aluminum ions

    No full text
    The paper presents TEM analysis of microstructure, phase composition, and mechanical properties of commercially pure titanium. These properties of two types of grains are compared before and after modification of titanium by aluminum ions, namely: large grains (1.4 μm) and small (0.5μm) grains. The analysis shows that ion implantation results in a considerable improvement of mechanical properties of both large and small grains throughout their implantation depth. However, with increase of the grain size, the stress in the ion-modified surface layer decreases while in the subsurface layer it increases

    Hardening by ion implantation of VT1-0 alloy having different grain size

    No full text
    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case
    corecore