1,371 research outputs found

    Reduction of friction by normal oscillations. I. Influence of contact stiffness

    Get PDF
    The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to "jump". It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters - a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider "stiff systems", where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper

    Static optimization in PHP 7

    Get PDF
    PHP is a dynamically typed programming language commonly used for the server-side implementation of web applications. Approachability and ease of deployment have made PHP one of the most widely used scripting languages for the web, powering important web applications such as WordPress, Wikipedia, and Facebook. PHP's highly dynamic nature, while providing useful language features, also makes it hard to optimize statically. This paper reports on the implementation of purely static bytecode optimizations for PHP 7, the last major version of PHP. We discuss the challenge of integrating classical compiler optimizations, which have been developed in the context of statically-typed languages, into a programming language that is dynamically and weakly typed, and supports a plethora of dynamic language features. Based on a careful analysis of language semantics, we adapt static single assignment (SSA) form for use in PHP. Combined with type inference, this allows type-based specialization of instructions, as well as the application of various classical SSA-enabled compiler optimizations such as constant propagation or dead code elimination. We evaluate the impact of the proposed static optimizations on a wide collection of programs, including micro-benchmarks, libraries and web frameworks. Despite the dynamic nature of PHP, our approach achieves an average speedup of 50% on micro-benchmarks, 13% on computationally intensive libraries, as well as 1.1% (MediaWiki) and 3.5% (WordPress) on web applications

    Stabilization of Myc through Heterotypic Poly-Ubiquitination by mLANA Is Critical for γ-Herpesvirus Lymphoproliferation

    Get PDF
    Host colonization by lymphotropic γ-herpesviruses depends critically on expansion of viral genomes in germinal center (GC) B-cells. Myc is essential for the formation and maintenance of GCs. Yet, the role of Myc in the pathogenesis of γ-herpesviruses is still largely unknown. In this study, Myc was shown to be essential for the lymphotropic γ-herpesvirus MuHV-4 biology as infected cells exhibited increased expression of Myc signature genes and the virus was unable to expand in Myc defficient GC B-cells. We describe a novel strategy of a viral protein activating Myc through increased protein stability resulting in increased progression through the cell cycle. This is acomplished by modulating a physiological post-translational regulatory pathway of Myc. The molecular mechanism involves Myc heterotypic poly-ubiquitination mediated via the viral E3 ubiquitin-ligase mLANA protein. EC5SmLANA modulates cellular control of Myc turnover by antagonizing SCFFbw7 mediated proteasomal degradation of Myc, mimicking SCFβ-TrCP. The findings here reported reveal that modulation of Myc is essential for γ-herpesvirus persistent infection, establishing a link between virus induced lymphoproliferation and disease

    Crop leaves high-resolution images analysis and segmentation by a convolutional neural network under small sampling condition

    Get PDF
    The authors propose an algorithm for analysing and segmenting high-resolution images of cultivated plant leaves by a convolutional neural network of deep learning in conditions of small samples. The algorithm implemented in the hardware and software complex includes images preprocessing procedures with the elimination of distortions if they are present, data augmentation to increase the number of variations, classification of signs by textural characteristics in order to identify diseases with subsequent segmentation of images of affected leaves

    Boron-Made N2: Realization of a B≡B Triple Bond in the B2Al3− Cluster

    Get PDF
    Until now, all B≡B triple bonds have been achieved by adopting two ligands in the L→B≡B←L manner. Herein, we report an alternative route of designing the B≡B bonds based on the assumption that by acquiring two extra electrons, an element with the atomic number Z can have properties similar to those of the element with the atomic number Z+2. Specifically, we show that due to the electron donation from Al to B, the negatively charged B≡B kernel in the B2Al3− cluster mimics a triple N≡N bond. Comprehensive computational searches reveal that the global minimum structure of B2Al3− exhibits a direct B–B distance of 1.553 Å, and its calculated electron vertical detachment energies are in excellent agreement with the corresponding values of the experimental photoelectron spectrum. Chemical bonding analysis revealed one σ and two π bonds between the two B atoms, thus confirming a classical textbook B≡B triple bond, similar to that of N2

    Method for evaluation of oil displacement coefficient based on conventional core analysis

    Get PDF
    The article is devoted to the problem of evaluation of oil displacement coefficient. Determination of oil displacement coefficient is essential stage for estimation of recoverable reserves, feasibility study of oil recovery factor and control of field development. Complexity of its laboratory determination is caused by labor intensity and duration of a process. When the number of cores is not enough for flow experiments or absent oil recovery factor is evaluated either similarly to neighbor fields or by analytical dependencies that are important to obtain. During the generalization and analysis of a significant amount of experimental data the authors developed a method for estimation of oil displacement coefficient without its laboratory determination. A proposed method is based on use of data from previous studies to built statistical models for estimation of displacement coefficient using linear step-by-step regression and discriminant analysis. In order to implement the method along with oil viscosity, knowledge of reservoir parameters such as porosity, permeability, irreducible water saturation and bulk density of a rock, determined by conventional core studies, is required. The main stages of implementation of the method for Visean clastic deposits of the Bashkir arch and Solikamsk depression of the Perm Region are presented. Results of implementation of the method for Bashkir carbonate deposits of the indicated tectonic elements are presented as well. Analysis of initial data allow establishing that there are classes of values for which regression equations are statistically justified. According to the equations model and experimental values of the displacement coefficients are very close to each other. It was concluded based on parameters of the equations that there is abnormal influence of initial oil saturation on the displacement coefficient. It is shown that for reservoirs of low flow characteristics a displacement coefficient is determined by their capacitive properties

    Nonlinear coherent optical systems in the presence of equalization enhanced phase noise

    Get PDF
    Equalization enhanced phase noise (EEPN) occurs due to the interplay between laser phase noise and electronic dispersion compensation (EDC) module. It degrades significantly the performance of uncompensated long-haul coherent optical fiber communication systems. In this work, a general expression accounting for EEPN is presented based on Gaussian noise model to evaluate the performance of multi-channel optical communication systems using EDC and digital nonlinearity compensation (NLC). The nonlinear interaction between the signal and the EEPN is analyzed. Numerical simulations are carried out in nonlinear Nyquist-spaced wavelength division multiplexing (WDM) coherent transmission systems. Significant performance degradation due to EEPN in the cases of EDC and NLC are observed, with and without the consideration of transceiver (TRx) noise. The validation of the analytical approach has been done via split-step Fourier simulations. The maximum transmission distance and the laser linewidth tolerance are also estimated to provide important insights into the impact of EEPN
    corecore